
Freshman-Sophomore Contest 2007
first-year students

There are six problems. The first three problems are common to both the
freshman and sophomore problem sets, and come from material studied in Math
151 and 152 or equivalent. The second page varies, so that freshmen work on
three further problems from that same content, while sophomores work on three
problems taken from Math 253 and Math 308 or equivalent courses.

Solutions are more than answers. Give supporting reasons for what you
have done when the steps are not just mechanical, and when they are, give the
intermediate steps.

1. Find
∫ 2

x=1

ln

(

x +
1

x

)

dx.

It’s −1 − 3 ln(2) − π/2 + 2 ln(5) + 2 tan−1(2). Integration by parts does
the trick.

2. Find

lim
x→∞

(

∫ 2x

x
(1 + t3)−1 dt

∫ 4x

3x (1 + t3)−1 dt

)

.

It’s 108/7. Both the numerator and denominator tend to zero as x →
∞, because the integrand is less than 1/t3 so the integrals are less than
what one would get integrating t−3 over those intervals. L’Hospital’s rule
applies, and in the limit, 1/(1+t3) is asymptotic to 1/t3 so one can replace
the former with the latter. This simplifies the calculations and results in
(−1 + 3/4)/(−1/16 + 1/9) = 108/7.

3. Two flat half-silvered mirrors are lined up parallel to each other, one inch
apart. Each mirror reflects half the light that falls on it, and passes half
straight on through. A laser beam strikes the first mirror head-on. Half
the beam thus passes through the first mirror, and half of that passes
immediately through the second. Some of the light, however, bounces
around between the two half-silvered mirrors before exiting either back
through the first mirror or on through the second. All in all, what fraction
of the beam eventually exits out the far end of the second mirror? (The
figure shows the beginnings of the story, taking into account just what
happens the first time the beam hits a mirror.)



One third of the light gets through. On the first pass, one quarter gets
through, and one quarter bounces back toward the first mirror. Of that,
half goes back into the gap, and of that half, half goes through mirror 2 the
second time, so half of half of one quarter makes 1 part in 16. Continuing
in this fashion, the fraction of the beam that goes out the far end of mirror
two on the first, second, third etc. pass is 1/4, 1/16, 1/64, and so on, for
a total of

∑∞
n=1 4−n = 1

3 .

4. A particle slides back and forth along a frictionless parabolic track with
equation y = x2, starting at (1, 1) with velocity zero. By conservation of
energy, its speed, when it has position (x, y), is proportional to

√
1 − y =√

1 − x2. There is a point along the parabola such that, as it passes that
point, the downward component of its velocity is maximum. Find that
point.

Whatever the velocity is, it resolves into part downward, part sideways.
The component of any particular mph of speed that is downward is given
by 2x/

√
1 + 4x2 while the component that is sideways is 1/

√
1 + 4x2. So

we have to maximize 2x
√

1 − x2/
√

1 + 4x2. Maximizing a square root
corresponds to maximizing the inside of the square root, so the maximum
will occur at whatever value of x makes 4x2(1 − x2)/(1 + 4x2) maximal.
But y = x2, so we might as well look for that value of y which maximizes
4y(1− y)/(1+4y) over the interval 0 < y < 1. Taking the derivative gives
a fraction in which the numerator is 1 − 2y − 4y2 which will have to be

zero, and this gives y = (
√

5−1)/4. That, finally, gives x =
√

(
√

5 − 1)/4,

and the required point has been found.

5. Find the radius of convergence of the following power series’:

(a)
∑∞

n=1 e−nxn,

(b)
∑∞

n=1 e−
√

nxn,

(c)
∑∞

n=1 e−n
√

nxn. The radius for the first one is e by the ratio test.
For the second, the ratio is, in the limit, x, so again by the ratio test,
the radius is 1. For the last, the ratio is

xe−(n+1)
√

n+1+n
√

n < xe−(n+1)
√

n−n
√

n = xe−
√

n.

The limit, for fixed x as n → ∞, is thus zero and so the radius of
convergence is ∞.

6. The graphs of sin(x) and sin(sin(sin(sin(sin(x))))) are shown:



How to account for this? Let sn(x) denote the result of starting with
x and applying the sine function n times. Thus s1(x) = sin(x), s2(x) =
sin(sin(x)), s3(x) = sin(sin(sin(x))), and so on. Thus sn+1(x) = sin(sn(x)).
Each of the parts below is to be proved for all n, and either for all x, or
for all x in a given interval. You will need to use induction for some of the
proofs. For each part, you are allowed to take as given all the previous
parts, whether or not you found your own proof for that previous part.

(a) Prove sn(−x) = −sn(x). We have sin(−x) = − sin(x). Now if the
statement holds for n, then for n + 1, we have

sn+1(−x) = sin(sn(−x)) = sin(−sn(x)) = − sin(sn(x)) = −sn+1(x).

By induction, it holds for all n.

(b) Prove sn(x + π) = −sn(x). We have

sn(x+π) = sn−1(sin(x+π)) = sn−1(− sin(x)) = −sn1
(sin(x)) = −sn(x)

where the next to last step was based on part (a) above.

(c) Prove sn(x + 2π) = sn(x). Apply the previous part twice.

(d) Prove sn(π − x) = sn(x). From parts (b) and then (a), we have
sn(−x + π) = −sn(−x) = sn(x).

(e) Prove sn(x) is positive for 0 < x < π. This is true for n = 1.
Now assume it holds for n, and consider sn+1(x) = sn(sin(x)). For
0 < x < π, 0 < sin(x) < 1 < π, and so sn(sin(x)) is an instance of
sn applied to a number between 0 and π, so we get a positive result.
Thus by induction, the statement that sn(x) is positive for all x in
(0, π) is proved.

(f) Prove sn(x) is increasing on the interval 0 < x < π/2. Again we
proceed by induction. This is true for n = 1. Consider

s′n+1(x) =
d

dx
(sin(sn(x))) = cos(sn(x))

d

dx
sn(x).

Both factors here are positive. The first is positive because sn(x) is
positive, but it’s also the sine of something so it’s no more than 1,
so 0 < sn(x) ≤ 1 and so 0 < sn(x) < π/2 so cos(sn(x)) > 0. The
second is positive by the inductive assumption.

(g) Prove sn(x) is decreasing on the interval π/2 < x < π. This follows
from the previous part together with part (d).

(h) Prove sn(π/2) ≥ 1/
√

n. For n = 1, we have equality. Now we just
need to prove that sin(

√

1/n) >
√

1/(n + 1). For n = 1, this is true

because sin(π/4) = 1/
√

2 and sin(1) > sin(π/4) because 1 > π/4.
For larger values of n, we have

sin
(

n−1/2
)

= n−1/2

(

1 −
1

3!n
+

1

5!n2
+ · · ·

)



while

(n+1)−1/2 = n−1/2

(

1 −
(1/2)

n
+

(1/2)(3/2)

2!n2
−

(1/2)(3/2)(5/2)

3!n3
+ · · · .

)

The second series is smaller than the first because the difference is
an alternating series starting with 1/(3n) and the terms decrease in
absolute value.


