TAMU 2008 Freshman-Sophomore Math Contest

Second-year student version.

There are five problems, each worth 20% of your total score. This is not an
examination, and a good score, even a winning score, can be well short of solving
all five problems completely. See what you can do with these. Rules: No laptop
computers, no calculators, no cell phones or other means of communicating with
the outside. You’re on your own for the duration of the contest. Blank paper
and pencils are provided.
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Let A be the integral on the left, and B, the integral on the right. We
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The second integral is, by a change of variable replacing v with u—m, equal
to foﬁ sin(u+m)/(u+m) du. Now sin(u+m) = sin(u) cos(m)+sin(m) cos(u) =
—sin(w). Thus
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2. Consider the system of differential equations

1. Show that
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with initial conditions z(0) = 11, y(0) = 8. At some later time, (1 > 0),
one of x(t1) or y(¢1) hits 0, while the other is still positive. Which one
remains positive? Explain.

There are several solutions. Perhaps the slickest is this: Consider E(t) :=
2(x(t) — 6)2 — (y(t) — 1)%. We have

E'(t) = 4(x(t)—=6)2"t(t)—2(y(t) —1)y'(t) = 4(z—6)(1-y)—2(y—1)(12—2z) = 0.

Since £ = 0 initially, £ is always 1. The curve E = 1 is a hyperbola,
with asymptotes being the lines corresponding to £ = 0, that is, y — 1 =
+v/2(z — 6). We started in the quadrant to the right of (6,1) initially,
because (11,8) lies below the line y — 1 = v/2(z — 6), because 7 < 5v/2
because 1.4 < /2. Thus, staying on the same branch of the hyperbola,
we must end up at the point where this branch crosses one or the other of
the axes, and it only crosses the y axis, so it is y that is zero at ¢;.



Another approach is more workmanlike, and doesn’t depend on pulling
rabbits from hats. Since 2’ =1 —y, 2’ = (1 —-y) = -y = 22 — 12.
Thus, z(t) has initial conditions z(0) = 11, 2/(0) = —7, and it satisfies the
differential equation z” — 2x + 12 = 0. This is a second-order linear dif-
ferential equation with constant coefficients. The corresponding homoge-
neous equation is 7 — 2z = 0, and that has solutions x1 5, (t) = e*7"*2* and

o p(t) = e~ V2, Adjusting for the ‘12’ by the method of undetermined co-

efficients, we see that 2(t) must have the form z(t) = cye¥2 +coe V2 +6.
Solving for ¢; and ¢ begins with plugging in the initial conditions to con-
clude that ¢; 4+ ¢ +6 = 11 and v2(c; — ¢o) = —7. Adding v/2 times the
first equation to the second equation shows that 2v/2¢; = 5v/2 — 7 > 0,
and another such calculation gives a value for ¢y that is clearly positive.
Thus z(t) is the sum of two quantities that are positive for all ¢, and it
must be y(t) that eventually hits 0.

A third approach uses the theory of second order linear systems. There is
a critical point at (6, 1). It’s a saddle point, and solutions flow toward the
line y — 1 = v/2(x — 6) and away from the line y — 1 = —/2(x — 6) because
the eigenvalue v/2 associated with the eigenvector 1, —\/5] is positive,
while the eigenvector —/2 associated with the eigenvector parallel to the
upper line y — 1 = v/2(z — 6) is negative. Since we started at a point below
the first line and above the second, the flow will take us out asymptotically
along the second line and down and to the right. That takes y(t) down
toward zero, and preserves z(t) to the right of 6, well clear of x = 0.
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Here, the denominator is 2 to the power n?.

(a) Show that g(2) > 0, g(4) > 0, and ¢g(8) > 0. One thing to keep in
mind is that an alternating series with terms that decrease in absolute
value, and decrease to zero, converges, and that such a sum converges
to a value between 0 and its first term.

Our sum for g(x) is not like that, because the terms initially increase
in absolute value. However, we can strip off any finite number of
starting terms, and add those up separately, and then use this ob-
servation on the tail of the series. So, let a(x) be the sum of all the
terms with absolute value 1 or more, and b(z), the rest.

We have a(2) = 1, while b(2) = —272 4276 - 2712... < 0. Thus,
g(2) < 0. For 4, we have a(4) =1—1=0and b(4) =273 — 275 +
2715...> 0. For 8, we have a(8) =4 —4+1>0and 0 < b(8) < 1,
so g(8) > 0.



(b) Show that ¢g(16) < 0. We have
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so that 0 < b(16) < 1/32. As to a(16), it is 23 — 2% + 23 —1 = —1.
With a(16) = —1 and b(16) < 1/32, it follows that g(16) < 0.

) Show that g(2®) < 0. This will be subsumed into the last part.

Generalize. That is, state when g(2¥) is positive, and explain. g(2*)
is negative when k is a multiple of 4, and positive otherwise.

What seems to be happening is that the main stuff, a(z), consists of
a sum which is the same read forward and backward, apart from the
business of the alternating signs. This suggests rearranging the sum
so that its central term is the zeroth term, and the other terms are
the 4 terms, [ running from minus somewhere, to plus the same.

When k = 4m, we have
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The term [ = 0 is largest, and gives a negative value because of the
factor (—1)!=!. The terms [ = +1, taken together, cancel that out.
So, we are back to zero. But now the terms [ = £2 give a negative
contribution, and the terms [ = +3, if the sum goes that far, give a
smaller positive contribution, and so on out to the end. The terms
[ = £2 give 2 - 24m* =4 which is an even positive integer. As we
observed at the outset, and alternating sum with terms that decrease
in absolute value yields a total with the same sign as the first term.
Thus, we get a negative integer for a(24™). As usual, |b(z)| < 1, so
g(2%™) < 0. We sketch the rest of the cases. If k = 4m + 1, we have
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The main terms having canceled, the first term of b(z) rules, and
that is the k = 4m + 2 term, which is positive. So g(2%"*!) > 0. For



k = 4m + 2, the situation is just like it is for k = 4m, with a central
term canceled by its flanking pair of terms. But then, the largest
pair of surviving near-central terms, corresponding to k = 2m — 1
and k = 2m + 3, gives a positive contribution. Thus g(2*™*2) > 0.
For k = 4m + 3, the terms pair off, with the middle pair being terms
number 2m + 1 and 2m + 2, except for the first term, which remains
unpaired. Thus ¢ = 1, and as usual, b is too small to change the
verdict. g(24m+3) > 0.

4. A girl walks along the edge of a 100 meter high cliff, going North at 1
meter per second, along a path 100 meters in length. Below, a ship keeps
even with her, but offshore (West), a distance of 10000/(100 + ¢) meters
at time ¢, starting at ¢t = 0. Thus, initially, the line-of-sight distance from
girl to ship is v/20000 meters. After 100 seconds, they’re both 100 meters
North of where they started, but the ship is only 50 meters clear of the
rocks, and the line-of-sight distance between girl and ship has diminished

to v/ 12500 meters.

What is the average value of the distance from girl to ship over the duration
of her stroll?
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(view from a seagull above and to the northwest of the path)

At time ¢, her North-South coordinates matches that of the ship. Her
Up-Down coordinate differs by 100. Her East-West coordinate differs by
10000/(100+t), so the overall distance at time ¢ is \/10% + 108/(100 + ¢)2.
Making first the substitution 100u = 100 + ¢, and then the substitution




u = tan @, the average distance A is
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where a = arctan 1 = /4, and b = arctan(2). Now in view of cot arctanz =
1/x, secarctanz = /1 + a2, and cscarctanz = v/1 + a2 /z, this gives an
average distance of

100 (—log(l +V1+22)+logz+ 1+ a2 ‘%)
=100 ((—log(l +v5) +1log2 + v5) — (—log(1 + v2) + \/5)) :

Further whimsical question: is the girl’s name Lorelei? Why, or why not?

(view from a seagull above and to the northwest of the path)

. The region shown is bounded by the lines from the ship to the girl as she
walked the path, by lines from the shore at the base of the cliff below the
girl, to the ship, by the face of the cliff itself for that 100 meter stretch,
and by the triangles at either end of the region. Although the top surface
of the region is composed of straight lines, it’s a curved surface. Set up,
but do not evaluate, a double integral for the area of the top surface.

There are a couple of approaches. One could take the base to be the square
cliff face East of the lines from ship to cliff-edge. Then, the equation for



the surface would be y = 100(100 — z)/(100 + z), and our integral would

be
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Thus our integral, written out in full, becomes
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If we view the surface as lying above the region at sea level between ship
and shore, then our equation is z = 100(1 — y(100 + z)/10%). Thus, =z
declines linearly from 100, when y = 0, to 0, when y = 10000/(100 + x),
so that y ranges from 0 to 100 when x = 0, while y ranges from 0 to 50
when z = 100.

Now, our area integral is
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And this time, 0z/0x = —y/100, while 0z/0y = —(100 4+ z)/100. This

gives an answer of
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