
TAMU 2013 Freshman-Sophomore Math Contest

Both Versions

While the name of the contest is traditional, the actual eligibility rules are
that first year students take the freshman contest, and second year students take
the sophomore contest. That way, students who have accummulated enough
credit hours in their first or second year to have standing as sophomores, or
juniors, are not promoted out of eligibility.

The first page contains problems built around Calculus I and II for both
freshmen and sophomores. The second pages are pitched to content unique to
Calculus III and/or Differential Equations, in the case of the sophomore contest.

In all cases, solutions should be written out and should include reasoning
behind the steps when reasons beyond routine calculation are involved. No
tables, calculators, or computers, and no devices for communication with the
outside world, are allowed. You’re on your own.

1. Find

lim
x→∞

ln
(

1 + e2x + e4x
)

ln (6 + e8x + e10x)
.

Solution: Observe that eax + ebx is dominated by the term associated
with the larger of a and b. (Meaning that their ratio goes to infinity. This
is easily checked.) Thus limx→∞(1 + e2x + e4x)/e4x = 1, and likewise,
(6+e8x +e10x)/e10x tends to 1. Thus the logs of these ratios tend to zero,
or equivalently, the difference between ln(6+ e8x + e10x) and ln e10x tends
to zero.

Our numerator thus amounts to 4x + stuff that goes to zero, and the de-
nominator, to 10x + stuff that goes to zero, so the limit is 2/5 and that is
our answer.

2. Let f(x) = tan(ln(cos x + sin x)) (where defined—there will be points at
which the definition of f breaks down).

(a) Find a formula for f ′(x) which holds where f is defined.

Solution: By the chain rule, the derivative is

f ′(x) = (cos x − sin x) ·
1

cos x + sin x
· sec2 ln(cos x + sinx).

(b) Find the number nearest 0 at which f is not defined. There are
two things that can cause f to not be defined. First, the expression
whose log is required may be zero or negative. This happens when
sinx = − cos x, or equivalently, when tanx = −1. This occurs at
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−π/4 and at 3π/4 and in general at −π/4+kπ where k is an integer.
The nearest of these is −π/4 itself.

Second, the log may exist, but its tangent not exist because the log is
itself an odd integer multiple of π/2. Now, we must figure out where
log(cos x + sin x) = π/2,−π/2,−3π/2 and so forth. The first does
not occur because cos x + sin x =

√
2 cos(x − π/4) by trigonometry,

and
√

2 < π/2. The second does occur, because all we need is that
cos x + sin x be near enough zero that the log is strongly negative.

The nearest point will be where cos x+sin x = e−π/2, or equivalently,
where cos(x−π/4) = 2−1/2e−π/2. So, x−π/4 = − arccos(2−1/2e−π/2).
Why the minus sign? Because traditionally, arccos is defined on [0, π]
and we want a negative number for x − π/4 because we know our
answer is near −π/4 rather than near 3π/4.

Finally, the answer: x = π/4 − arccos(2−1/2e−π/2).

(c) Sketch the graph of f(x) on the interval (−π/4, 3π/4), indicating
such discontinuities as may exist. How many are there, in all, on
that interval? Why?

Solution: There are infinitely many points of discontinuity, one at
each place where cos x + sinx hits a small number near enough zero
that its log takes the form −kπ/2. These will cram up against the
endpoints of our interval −π/4 and 3π/4.

The graph will thus look like this in the middle, and zooming in, at
the edges:
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3. Find, accurate to within ±0.0001, the numerical value as a decimal of the
form a.bcde of

∫ 1

x=0

1

x
sin(x2) dx.

Solution: this is a job for Ceres, Goddess of the Harvest! (Here, spelled
Series.) The series expansion of sin z is

sin z = z −
z3

3!
+

z5

5!
− · · · .

(To the question, how am I supposed to know that?—the answer must
be, by rote. Like the times table. It’s a basic fact that crops up so
frequently that knowing it is indispensable.) Anyhow, with some manip-

ulation, sinx2 = x2 − x6

3!
+ x10

5!
+ · · · , and (1/x) sin x2 = x− x5

3!
+ x9

5!
− · · · .

Now this can be integrated term by term, with the result that the required
definite integral is given by a rapidly converging, alternating sum with a
value A = 1

2
− 1

6·3! + 1

10·5! − · · · . We have enough terms already and it is
time for some arithmetic: 1

2
− 1

36
+ 1

1200
= 1800−100+3

3600
= 1703

3600
= 0.4731,

rounded up to the nearest ten-thousandth. The actual value is nearer
0.473042, or if you want lots and lots of places,

A =0.473041535183591507470676656911589828906

16897736905589523572738678334 351827039896

4. Let g(x, y, z) = xy + xyz.

(a) Find
∂2g

∂x∂y
.

Solution: the partial with respect to y is x + xz, and the partial of
that with respect to x is 1 + z. The answer is 1 + z.
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(b) Find a point on the unit sphere x2+y2+z2 = 1 at which g is maximal.

Solution: There are a number of ways to go at this. One is that at
the best point, the gradient of g is parallel to the gradient of the
function whose constant contour gives the constraint surface. Here,
that means that (y + yz, x + xz, xy) = C(x, y, z). Where does this
(and also, x2 + y2 + z2 = 1, of course) happen?

Well, since (y+yz)/x = C and (x+xz)/y = C, clearly y = x. So now
we just need (x + xz)/x = C = z/x2. Equivalently, (1 + z) = z/x2,
and now recalling that x2 + x2 + z2 = 1, we have x2 = (1 − z2)/2,
so (1 + z) = (1 − z2)/(2z). With a little manipulation this becomes
3z2 + 2z − 1 = 0 which has solutions z = 1/3 and z = −1. clearly
taking z = −1 is a step in the wrong direction (we would do better
at z = 0!), so we take z = 1/3. That gives x = ±2/3, which leaves
us with two choices: (2/3, 2/3, 1/3) and (−2/3,−2/3, 1/3).

Another approach abstains from using gradients etc. and just pro-
ceeds from first principles. Now first principles is good, hearty, solid
stuff, but it does tend to involve more work. Sophisticated methods
are just slicker. Anyhow, hi ho, it’s off to work we go!

Clearly we may as well restrict attention to x, y, z ≥ 0. Now xy is
maximized, subject to a fixed value of x2 + y2, by taking y = x. So
we’re looking now to maximize x2(1 + z) subject to 2x2 + z2 = 1
and 0 ≤ z ≤ 1. That amounts to maximizing x2(1 +

√
1 − 2x2)

over the interval possible for x, which here is [0, 1/
√

2]. This is a
straightforward if somewhat ugly single-variable calculus question.
One observes that at x = 0 the function takes the value 0 while at
x = 1 it takes the value 1, and then the question arises whether there
are any points in (0, 1) where the derivative is zero. That derivative
is −2x3/

√
1 − 2x2+2x(1+

√
1 − 2x2 and factoring out a 1/

√
1 − 2x2,

(which will never be zero), we are solving 2x−6x3 +2x
√

1 − 2x2 = 0.
Equivalently, (except for the risk of introducing extraneous roots)
4x2 − 24x4 + 36x6 = 4x2 − 8x4.Putting w = x2 and dividing out
a factor of 4 this boils down to −4w2 + 9w3 = 0 so w = 4/9 and
x = 2/3. There is one, it happens, at x = 2/3. And then we find
that z = 1/3 and we’re back to the same answer.

5. Find the centroid of the region L bounded below by the line y = 4 − x

4



and above by an arc of the circle x2 + y2 = 16.

1 2 3 4

1
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4

The centroid, or center of mass, of a region is got by finding x and y. In
this problem, by symmetry, these are equal. So we may as well just find y.
That’s the moment Mx of inertia of the figure about the x axis, divided
by the area of the figure. And Mx is the double integral of y, taken over
the region.

The lower limit of the figure is the line segment y = 4 − x, taking x from
0 to 4, while the upper limit is the circle-arc y =

√
16 − x2. Thus

Mx =

∫

x=04

∫

√
16−x2

y=4−x

y dy dx.

The inner integral evaluates to 1

2
((16 − x2) − (4 − x)2) = 4x − x2, and

the outer integral then evaluates to 2x2 − 1

3
x3 at 4 minus at zero, or

32 − 64/3 = 32/3. What about the area? We could do another double
integral, but it is simpler to use plain old plane geometry. The area of
the quarter circle in the positive quadrant is (1/4)πr2, and since r = 4,
that’s 4π. The area of the triangle that is not part of L is (1/2)br, and
here b = r = 4 so that’s 8. So the area of L itself is 4π − 8, and

y = x =
32/3

4π − 8
=

8

3π − 6
.

6. Find the average value of the square of the distance from the origin to
points inside the triangle with vertices (0, 0, 1), (0, 1, 0), and (0, 0, 0).
(Equivalently, you could think of it like this: imagine a large number
of evenly spaced points spread out across that triangle. Imagine that for
each, you computed the square of the distance to the origin as shown, and
then averaged those numbers. The answer to the original question would
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be the limit of this imaginary calculation as ever more points were used.)

We want to integrate the value of x2 + y2 + z2 over this triangle, with
respect to area, and then divide by the area itself.

It will be simpler to use dydx in place of ds, but we will have to do this for
both the integral of the distance squared, and the integral that gives the
area. (The ratio of ds over dydx is independent of x and y. Done this way,
the ‘area’ is just 1/2. What about the other integral? We have to get z in
terms of x and y. The equation of the plane of our triangle is x+y+z = 1
(because that equation holds at all three corners) so z = 1−x− y. So our
integral for distance squared is

∫ 1

x=0

∫ 1−x

y=0

x2 + y2 + (1 − x − y)2 dy dx =
1

4
.

Integrating 1 over the area (1/2) of the region in the x, y plane gives 1/2,
and dividing 1/4 by 1/2 we have our answer, 1/2.
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