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Figure 1: Graph of damped cosine wave

Solutions for the Texas A&M Freshman-Sophomore Contest 2017

First year student version

There are two pages, six problems. The first three problems are common to
both versions.

1. Let f(x) = cos(x)e−x2/(4π2).

(a) Sketch the graph of f(x) over the interval [−4π, 4π].

(b) Find the derivative of f(x) at x = π and simplify fully. The product
rule and the chain rule come into play because f is the product of
cosx and e−x2/4π2

. The derivative works out to (−x cosx/(2π2) −
sinx)e−x2/4π2

. Setting x = π zeroes out the sine term and the answer
is 1

2π e
−1/4.

2. The identity cos(2t) = 2 cos2(t)− 1 has some curious consequences.

(a) Express cos(4t) in terms of cos t. It’s 8 cos4(t)− 8 cos2 t+ 1.

(b) Sketch the graph of y = x4 − x2 + 1
8 on the interval −1 ≤ x ≤ 1,

and find the minimum value of y and where it occurs. The minimum
value is −1/8 because of the first two parts, which imply that this
polynomial is (1/8) cos(4 cos−1 x). The minimum value occurs at
x = ±1/

√
2 because the derivative is 2x(2x2 − 1) which is zero at

those places and at zero. But at 0, the original polynomial evaluates
to positive. Because of the tie-in with the cosine function, the graph
runs back and forth between −1/8 and 1/8; the maximum occurs at 0
and at /pm1, while the minimum occurs at ±1/

√
2. Polynomials that

agree on [−1, 1] with cos(n cos−1 x) are called Chebyshev polynomials
and have all sorts of interesting properties, not just the one that
defines them.
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Figure 2: Graph of Cheybshev-type polynomial

3. Take as given the power series expansion

ez =
∞∑

n=0

zn

n!
.

Find in closed form

A = 1 +
∞∑
k=1

(−1)k

(2k)!

(2k − 1)!

(k − 1)!22k−1
.

The (2k− 1)! in the numerator cancels all of the (2k)! in the denominator
except for its final factor 2k. Putting the 2 here with the 22k−1 gives that

A = 1 +
∞∑
k=1

(−1)k2−2k

k!
= e−1/4,

this last by the series expansion for ez specialized to the case z = −1/4.

4. Let g(x) = x+ x2/22 + x4/44 + x8/88 + · · · .

(a) Determine with proof the radius of convergence of the series defining
g(x). The radius is infinity. That is, the series converges for all values
of x. There are several ways to prove this. The ratio of the k + 1th
nonzero term to the kth nonzero term is

rk =
x2k+1

2(k+1)2k+1

2k2
k

x2k
=

x2k

2(k+2)2k
=

( x

2j+2

)2k

.

The last expression here is the 2k power of an expression which is
going to zero for any fixed x, as k tends to infinity. So the limit of
the ratio is zero, whatever the value of x, and thus by the ratio test
for ordinary series, this series converges for all x and the radius of
convergence is infinite.

The root test says, for the case at hand, that if the coefficient of xn

is an and |an|1/n goes to 0, then the radius of convergence is infinite.
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Here, when n is not a power of 2, the coefficient is exactly 0 which is
more than sufficient. If n = 2k, then the coefficient is

a2k = (2k)−2k = 2k2
k

.

The 2kth root of this is 2−k. In other words, for the interesting values

of n, a
1/n
n = 1/n. That of course goes to zero.

Another proof would be that the coefficients are either zero, or when
they are not, they have the form n−n which is less than or equal
to 1/n! because n! = 1 · 2 · · ·n ≤ n · n · · ·n. Since the series for
ex converges for all x, and since the coefficients are all positive and
smaller in the case at hand, this series too converges everywhere.

(b) Find, to six decimal places accuracy, g′(1). The derivative of a power
series can be taken term by term. Here, the derivative is 1 + 2x/4 +
4x3/256+8x7/(88)+ · · · and the next term is just 16−15 < 10−10 and
all subsequent terms are less than half the one that came before so
the total of what’s not included in the initial arithmetic is less than
2 · 10−10. Now

1 + 0.5 + 0.015625 + too little to matter = 1.515625.

(c) Find the integer nearest g(6). The first few terms are 6, 9, and
81/16 = 5+1/16. The rest are collectively too small to matter. The
first one not part of this arithmetic is (3/4)4 which is about 1/10,
and the ones that follow are each less than half the previous so in
total they add less than 1/5. Thus the nearest integer is 20.

(d) Prove that there are infinitely many positive integers N so that
g(N) > 2N/2. If N is a power of 2, then the expression for g(N)
includes the term NN/2/(N/2)N/2 as the term right before the term
NN/NN = 1. But NN/2/((N/2)N/2) = 2N/2. The rest of the series
makes the series total greater than 2N/2.

(e) Prove that there is a constant C so that G(N) < 2CN for all positive
N . As noted earlier, g(x) < ex. Thus g(x) < 2x/ ln(2). Take C =
1/ ln(2).

5. Graph the curve y = (1 − x)/
√
1− x2 on the interval [0, 1) and find the

volume of the solid enclosed by rotating that curve about the x axis. The
function can be simplified to

√
(1− x)/(1 + x) which makes it easier to

see what is going on. When x = 0, the function is at 1, and it decreases
until when x = 1, it’s at 0.

The volume involved is
∫ 1

0
π(1 − x)/(1 + x) dx because the disk method

involves πr2 and that squares the square root in the formula. Now with
the substitution u = 1 + x, the numerator is 2 − u so the volume is

π
∫ 2

1
(2− u)/u du = π(2 ln(2)− 1).
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Figure 3: Graph of curve for problem 5

6. Define ζ(s) by

ζ(s) =
∞∑

n=1

n−s.

Thus, for instance, ζ(2) =
∑∞

n=1 n
−2.

(a) For which real numbers s does the series defining ζ(s) converge? It
converges for s > 1. Compare the series to the improper integral in
the next part of the problem. If you cut that integral into pieces of
length 1, each piece comes to a value comparable to the corresponding
term in the series.

(b) Let f(s) =
∫∞
1

x−s dx. Find a closed-form expression for f(s) when
the improper integral converges. The antiderivative of xa is (1/(a+
1))xa+1 except when a = −1. Here, a = −s so that rule gives (1/(1−
s))x1−s. Evaluated at 1 and infinity that works out to 1/(s−1), which
is the answer.

(c) Prove that this chain of statements is true for n ≥ 1 and s > 0:

n−s−
∫ n+1

x=n

x−s dx < n−s− (n+1)−s = s

∫ n+1

x=n

x−s−1 dx < sn−s−1.

The first inequality holds because on the interval (n, n+1), x < n+1
so x−s > (n + 1)−s so subtracting x−s leaves less than subtracting
merely (n+1)−s. The second claim is true because of the antideriva-
tive rule noted already, multiplied by s. The final inequality is true
because on the interval (n, n + 1), x−s−1 < n−s−1 and the integral
of that over [n, n+ 1] is just n−s−1.
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