
TAMU 2018 Freshman-Sophomore Contest

Solutions should include all necessary steps and calculations. This is the
Freshman (1st year) version; both versions share the same first page.

1. A parabola in the coordinate plane is tangent to the x axis at (1, 0) and
to the y axis at (0, 1); its axis is thus the line y = x.

(a) Find the focus of the parabola.

The focus of a parabola is the point at which all reflections of in-
coming rays parallel to the axis meet. Here the lines y = x + 1 and
y = x−1 reflect off the parabola at the points (0, 1) and (1, 0) respec-
tively, each at a 45 degree angle from the vertical or horizontal, to run
along the line x + y = 1. The focus lies on the axis, so x = y = 1/2
and the focus is (1/2, 1/2).

(b) The vertex of the parabola is the point where the axis crosses the
parabola. In this case, that point is (1/4, 1/4). Why is that? The
directrix of a parabola is a line perpendicular to the axis with the
property that the distance from any point on the parabola to the
directrix is equal to the distance of that point to the focus. The dis-
tance from (1, 0) to (1/2, 1/2) is 1/

√

2, so the distance from (1, 0) to
the directrix should also be (1/2, 1/2). That puts the directrix going
through the point (1, 0)− (1/2,−1/2) = (1/2,−1/2), so the equation
of the directrix is x + y = 0. The distance from the focus to the
vertex is equal to the distance from the vertex to the directrix, which
puts the vertex midway between the point at which axis and directrix
cross (here, (0,0)), and the focus. Thus the vertex is (1/4, 1/4).

(c) You may now take as given the previous item. The equation of the
parabola can be put in the form (x + y) = A(x − y)2 + B. Find A
and B.

The choice of A and B must work with (1, 0) and (0, 1). This gives
1 = A + B. Differentiating the given equation gives 1 + y′ = 2A(x−

y)(1 − y′). Specializing to x = 1, y = 0 gives 1 + 0 = 2A. Thus
A = B = 1/2. Another way to finish the calculation is to use the
vertex; that gives (1/4 + 1/4) = B.

(d) Find the area of the finite region bounded between the parabola and
the line segments joining (0, 0) to (1, 0) and to (0, 1). Solving for
y in terms of x and simplifying gives y = 1 + x − 2

√
x, and then∫ 1

0
(1 + x − 2x1/2 dx = 1 + 1/2 − (4/3) = 1/6. The area is 1/6.

2. Prove or disprove that ∫
∞

0

log(x) dx

1 + x2
= 0.
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One way to evaluate definite integrals is to find the antiderivative and
evaluate it at the endpoints. This is great if you can find an antiderivative.
But that’s not always possible. Even if it is possible, your own efforts
may not hit upon it. There are other approaches. Here, if you try the
substitution u = 1/x, then du = −x−2 dx, or equivalently, dx = −u−2 du.
This yields

A =

∫
∞

0

log(x)

1 + x2
dx = −

∫ 0

∞

log(1/u)

u2(1 + u−2)
du.

When the counting of minus signs from the reversal of order, the explicit
minus sign, and the fact that log(1/u) = − log(u) is sorted out, the same
integral, with only the notational difference that we have u in place of x,
appears both as A and as −A. Therefore A = 0.

3. A one by one square starts out solid green. It is subdivided into four
congruent, non-overlapping smaller squares, and the one on the bottom
left is colored red.

The three remaining green squares are each similarly subdivided into nine
squares, and in each case, the bottom left sub-square is colored red. At
this point, one large square and three smaller squares are red, and there
are 24 smaller green squares.

These green squares are each subdivided into sixteen yet smaller squares,
and as before, one of each batch of sixteen is colored red.

Repeat with 25,36, 49 etc. What portion of the original square remains
green throughout?

The first cut out consumes 1/4 of the original square. The second con-
sumes 1/9 of what is left, so that 8/9 of 3/4 remains. We’re now at any
area remaining of 3

4 ·
8
9 = 4

6 . The next batch of red covers 1/16 of what
remains, so that the total remaining green is now 3

4
8
9

15
16 = 5

8 and then we
have 5

8 · 2425 = 6
10 . A pattern emerges: after n− 1 rounds of coloring, the

portion that remains green is (n + 1)/2n. The next round converts that

to (n+1)(n2
−1)

2n(n+1)2 = n+2
2n+2 and the pattern holds up. The limit is thus 1/2.

Half the square remains green and the other half gets colored red.
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Figure 1: partway through the story
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4. Find
d

dx

∫ 2x

x

sin(t2) dt.

The fundamental theorem of calculus and the chain rule give 2 sin(4x2)−
sin(x2) as the answer.

5. An ant approaches a conical anthill 2 meters in diameter at its base. As it
gets closer, the angle θ(t) from the leftmost point of the hill that is visible
to the ant, to the ant’s eyes, to the rightmost point, increases. Find dθ/dt
at the time the ant is one meter from the nearest point of the base of the
anthill. (Measure theta in radians.)

The problem is lacking the speed of the ant, so let’s call that S. The arc
of the base that is visible to the ant is the part of the base circle that lies
inside the right triangle with hypotenuse running from the center of the
base (at (0, 0), say), to the position of the ant (at (x, 0) say), and over to
the point P (x) on the base so that the line segments from (x, 0) to P (x),
and from P (x) to (0, 0), are perpendicular.

The second line segment has length 1 from the statement of the problem,
so the other segment has length

√

x2 − 1. The angle φ(x) at (x, 0) between
the segment to (0, 0) and the segment to P (x) is half the angle θ(x) in the
question, and sinφ(x) = 1/x. So cos φ(x)φ′(x) = −1/x2. In particular,
√

3/2φ′(2) = −1/4. From this we have φ′(2) = −

√

3/2 and thus θ′(2) =
√

3S since the ant is moving toward the nest.

6. Let f(x) = sin(sin(x)). Find the 5th degree Taylor’s polynomial approxi-
mation to f (about 0). The series expansion of sin(x) is

sin(x) = x − x3/3! + x5/5! − · · · .

Expanding and dropping all higher order terms, we have sin sinx = sin x−
(1/6) sin3 x + (1/120) sin5 x + O(x7) = (x − x3/6 + x5/120) − (1/6)(x −

x3/6+)(x5))3+(1/120)(x+O(x3))5 = x−(1/3)x3+(1/5!+3/6!2+1/5!)x5+
O(x7) = x − 1/3x3 + (1/10)x5 + O(x7) and the Taylor’s polynomial is
x − x3/3 + x5/10.
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