
TAMU 2018 Freshman-Sophomore Contest

Solutions should include all necessary steps and calculations. This is the
Sophomore (2nd year) version; both versions share the same first page.

1. A parabola in the coordinate plane is tangent to the x axis at (1, 0) and
to the y axis at (0, 1); its axis is thus the line y = x.

(a) Find the focus of the parabola.

The focus of a parabola is the point at which all reflections of in-
coming rays parallel to the axis meet. Here the lines y = x + 1 and
y = x−1 reflect off the parabola at the points (0, 1) and (1, 0) respec-
tively, each at a 45 degree angle from the vertical or horizontal, to run
along the line x + y = 1. The focus lies on the axis, so x = y = 1/2
and the focus is (1/2, 1/2).

(b) The vertex of the parabola is the point where the axis crosses the
parabola. In this case, that point is (1/4, 1/4). Why is that? The
directrix of a parabola is a line perpendicular to the axis with the
property that the distance from any point on the parabola to the
directrix is equal to the distance of that point to the focus. The dis-
tance from (1, 0) to (1/2, 1/2) is 1/

√
2, so the distance from (1, 0) to

the directrix should also be (1/2, 1/2). That puts the directrix going
through the point (1, 0)− (1/2,−1/2) = (1/2,−1/2), so the equation
of the directrix is x + y = 0. The distance from the focus to the
vertex is equal to the distance from the vertex to the directrix, which
puts the vertex midway between the point at which axis and directrix
cross (here, (0,0)), and the focus. Thus the vertex is (1/4, 1/4).

(c) You may now take as given the previous item. The equation of the
parabola can be put in the form (x + y) = A(x − y)2 + B. Find A
and B.

The choice of A and B must work with (1, 0) and (0, 1). This gives
1 = A + B. Differentiating the given equation gives 1 + y′ = 2A(x−
y)(1 − y′). Specializing to x = 1, y = 0 gives 1 + 0 = 2A. Thus
A = B = 1/2. Another way to finish the calculation is to use the
vertex; that gives (1/4 + 1/4) = B.

(d) Find the area of the finite region bounded between the parabola and
the line segments joining (0, 0) to (1, 0) and to (0, 1). Solving for
y in terms of x and simplifying gives y = 1 + x − 2

√
x, and then

∫ 1

0
(1 + x − 2x1/2 dx = 1 + 1/2 − (4/3) = 1/6. The area is 1/6.

2. Prove or disprove that
∫ ∞

0

log(x) dx

1 + x2
= 0.
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One way to evaluate definite integrals is to find the antiderivative and
evaluate it at the endpoints. This is great if you can find an antiderivative.
But that’s not always possible. Even if it is possible, your own efforts
may not hit upon it. There are other approaches. Here, if you try the
substitution u = 1/x, then du = −x−2 dx, or equivalently, dx = −u−2 du.
This yields

A =

∫ ∞

0

log(x)

1 + x2
dx = −

∫ 0

∞

log(1/u)

u2(1 + u−2)
du.

When the counting of minus signs from the reversal of order, the explicit
minus sign, and the fact that log(1/u) = − log(u) is sorted out, the same
integral, with only the notational difference that we have u in place of x,
appears both as A and as −A. Therefore A = 0.

3. A one by one square starts out solid green. It is subdivided into four
congruent, non-overlapping smaller squares, and the one on the bottom
left is colored red.

The three remaining green squares are each similarly subdivided into nine
squares, and in each case, the bottom left sub-square is colored red. At
this point, one large square and three smaller squares are red, and there
are 24 smaller green squares.

These green squares are each subdivided into sixteen yet smaller squares,
and as before, one of each batch of sixteen is colored red.

Repeat with 25,36, 49 etc. What portion of the original square remains
green throughout?

The first cut out consumes 1/4 of the original square. The second con-
sumes 1/9 of what is left, so that 8/9 of 3/4 remains. We’re now at any
area remaining of 3

4 · 8
9 = 4

6 . The next batch of red covers 1/16 of what
remains, so that the total remaining green is now 3

4
8
9

15
16 = 5

8 and then we
have 5

8 · 2425 = 6
10 . A pattern emerges: after n− 1 rounds of coloring, the

portion that remains green is (n + 1)/2n. The next round converts that

to (n+1)(n2−1)
2n(n+1)2 = n+2

2n+2 and the pattern holds up. The limit is thus 1/2.

Half the square remains green and the other half gets colored red.
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Figure 1: partway through the story
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Figure 2: One wave, α = π,more waves, α = 4π

4. Let fα(x) = cos(α sinx).

(a) Sketch the graphs of fπ(x) and f4π(x) on the interval 0 ≤ x ≤ π.

(b) Let g(t) =
∫ π

0
ft(x) dx. You may take as given that differentiation

with respect to t may be carried inside the integral. Show that

tg′′(t) + g′(t) + tg(t) = 0.

(Hint: Integration by parts). We begin by by writing out what tg′′ +
g′ + tg is: call it S(t). Then g′(t) = −

∫ π

0
sin(t sin x) sin x dx and

g′′(t) = −
∫ π

0
cos(t sin x) sin2 x dx. Thus S = A + B + C, say, where

A = −
∫ π

0

t cos(t sin x) sin2 x dx,

B = −
∫ π

0

sin(t sin x) sin x dx,

and

C =

∫ π

0

t cos(t sin x) dx.

In B, which we single out because it involves the off-pattern ex-
pression sin(t sin x), set U = sin(t sin x) and dV = sin x dx. Then
dU = t cos(t sin x) cos x dx and V = − cos x, so

B = − sin(t sin x) cos x|x=π
x=0 +

∫ π

0

t cos(t sin x) cos2 x dx

=

∫ π

0

t cos(t sin x) cos2 x dx.

4



Thus

S = tg′′ + g′ + tg =

∫ π

0

t cos(t sin x)(− sin2 x − cos2 x + 1) dx = 0.

5. Find
∫ 1

0
arctan(

√
x) dx, and express your answer in the form Aπ+B, where

A and B are rational numbers. First solution: Recall that arctan′(u) =
1/(1 + u2). From this it follows that arctan(u) =

∫ u

0
ds/(1 + s2). Now

write the original expression, call it I for ‘integral’, as

I =

∫ 1

x=0

∫

√
x

y=0

1

1 + y2
dy dx.

Reversing the order of integration gives

I =

∫ 1

y=0

∫ 1

x=y2

1

1 + y2
dx dy =

∫ 1

y=0

1 − y2

1 + y2
dy.

Now write the numerator as −1−y2+2 and you get I = −1+2
∫ 1

0
1

1+y2 dy =

−1 + 2 arctan 1 = −1 + π/2. So A = 1/2 and B = −1.

Second solution: make the substitution x = u2, dx = 2u du. The integral

becomes
∫ 1

0
2u tan−1 u du. Now integrate by parts, taking U = tan−1 u

and dV = 2u du. You get u2 tan−1 u1
0 −

∫ 1

0
u2/(1+u2) du. The rest of this

goes pretty much the same way the other solution did and gives the same
answer.

6. Let x(t) and y(t) be twice-differentiable functions of t satisfying the dif-
ferential equations

x′′ =
x

x2 + y2
, y′′ =

y

x2 + y2
.

Let θ(t) and r(t) be the polar coordinates of the point with Cartesian
coordinates (x(t), y(t)). (So, x(t) = r(t) cos(θ(t)), y(t) = r(t) sin(θ(t))).
Prove that r2(t)dθ/dt is constant.

We can rewrite the equations for x′′ and y′′ to x′′ = cos(θ)/r, y′′ =
sin(θ)/r. Now putting everything into r = r(t) and θ = θ(t) gives

cos θ

r
= r′′ cos θ − 2r′θ′ sin θ − r cos θθ′2 = r sin θθ′′,

sin θ

r
= r′′ sin θ + 2r′θ′ cos θ − r sin θθ′2 + r cos θθ′′.

Multiply each of these equations by r and multiply the first by − sin θ and
the second by cos θ and add. On the left, this gives 0. On the right, there

5



is a lot of cancellation and with a couple uses of cos2 θ + sin2 θ = 1 the
whole thing boils down to 0 = 2rr′θ′ + r2θ′′. But this is equivalent to

0 = d
dt

(

r2θ′
)

which shows that r2θ′ is constant.

Why would anyone expect such a thing to be true? Because it’s a lot like
conservation of angular momentum. The ‘gravity’ formula is different, and
the result is a different kind of ‘angular momentum’.
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