
TAMU Freshman-Sophomore Contest, 2016
Second-year students’ version

While the name of the contest is traditional, the actual eligibility rules are
that first year students take the freshman contest, and second year students
take the sophomore contest. That way, students who have accumulated enough
credit hours in their first or second year to have standing as sophomores, or
juniors, are not promoted out of eligibility.

The first page contains problems built around Calculus I and II for both
freshmen and sophomores. The second pages are pitched to content unique
to Calculus III and/or Differential Equations, in the case of the second-year
version.

In all cases, solutions should be written out and should include reasoning
behind the steps when reasons beyond routine calculation are involved. No
tables, calculators, or computers, and no devices for communication with the
outside world, are allowed. You’re on your own.

1. Find
∫ π/2

0
cos x cos 2x dx. The identity cos(a + b) = cos a cos b− sin a sin b,

applied to the cases a = 2x, b = x and a = 2x, b = −x yields cos 2x cos x =
1
2 (cos 3x + cos x). Integrating this from 0 to π/2 gives an answer of
1
2 (sin 3x/3 + sinx|

π/2
0 = 1

3 . The answer is 1/3.

For another solution, the same identity for cos(a+ b) is applied instead to
the case a = b = x, so that cos x cos 2x = (cos x)(cos2 x− sin2 x). But now

∫ π/2

x=0

(cos x)(cos2 x − sin2 x) dx =

∫ π/2

x=0

(1 − 2 sin2 x) cos x dx

=

∫ 1

u=0

(1 − u2) du = 1 −
2

3
=

1

3

by way of the substitution u = sinx, du = cos x dx. Which is the better
solution? From one perspective, the second solution is best. It’s shorter
and easier to understand. From another perspective, the first solution is
best because it can be adapted to a wider variety of similar cases, such as
cos(2x) cos(3x).

2. Let f(x) = x
1+x2 . Let g(x) be the 19th derivative of f(x). Find g(0)

20! .
Probably the best way to work this is to first get the series expansion of
f(x) about 0. The series 1/(1− z) = 1+ z + z2 + · · · , with z = −x2, gives

x
1+x2 = x− x3 + x5 − x7 · · · + x17 − x19 + · · · . Taking the 19th derivative
term by term, as we may do inside the radius of convergence, which is 1
here, gives

f (19)(x) = −19! +
21!

2!
x2 −

23!

4!
x4 − · · ·
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and setting x = 0 and dividing by 20!, the answer is −1/20.

3. Let u(x) = sin(8x)e−x2

.

(a) Graph u(x) on the interval −π/2 ≤ x ≤ π/2.
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(b) Given that
∫

∞

0
tke−t dt = k! for all nonnegative integers k, prove that

∫

∞

0

u(x) dx =
1

2

∞
∑

k=0

(−1)k k!82k+1

(2k + 1)!
.

Here we need to break up sin(8x) into its power series, but not break

up e−x2

. A truly careful proof must address matters of convergence,
and that can be done here by cutting off the series at some point N
and then proving that the rest of the series is at any rate bounded
between what one would get with all the terms positive from then
on, and with all of them negative, and that both bounds tend to
zero. For all x, sin(8x) =

∑

∞

k=0. For any positive integer N , this

can be split as sin(8x) = (
∑N

k=0 +
∑

∞

k=N+1(−1)k(8x)2k+1/(2k + 1)!.
Let the first sum be SN (x) and the second sum be RN (x), as in sum
and remainder. We have |Rn(x)| ≤

∑

∞

k=N+1(8x)2k+1/(2k+1)!. Now
let’s get down to the mechanics.

∫

∞

0

SN (x) dx =

∫

∞

0

N
∑

k=0

(−1)k82k+1x2k+1e−x2

/(2k + 1)! dx

=

N
∑

k=0

(

(−1)k82k+1/(2k + 1)!
)

∫

∞

x=0

x2k+1e−x2

dx

=
1

2

N
∑

k=0

(

(−1)k82k+1/(2k + 1)!
)

∫

∞

u=0

uke−u du

=
1

2

N
∑

k=0

(−1)k82k+1 k!

(2k + 1)!
.
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Also,
∫

∞

0
RN (x) dx <

∑

∞

k=N+1 82k+1 k!
(2k+1)! , because with every-

thing positive, we can switch summation and integration with con-
fidence. If any version converges then the others do as well, and all
of them, with absolute convergence. For N > 10, say, each term is
less than half the one before it in this sum, so the total is less than

twice the first term. That is,
∫

∞

0
RN (x) dx < 2 ·82(N+1)+1 (N+1)!

2N+3)! , an

expression which tends to 0 rapidly as N tends to infinity because
the factorial of 2N + 3 dominates.

So for all N ,
∫

∞

0
u(x) dx =

∫

∞

0
SN (x) + RN (x) dx. The first integral

evaluates to an expression whose limit is the claimed answer, and the
second integral evaluates to an expression whose limit is 0. We are
done.

4. Find the average value of the distance from a point on the sphere of radius
1 about the origin to the plane z = 0. Average so as to give equal weight
to equal areas on the sphere.

The average distance is 1/2. To find the average, we integrate the distance
and divide by the area 4π of the sphere. But–how shall we set up the
integral? To properly give equal weight to equal areas, we should integrate
|z| with respect to surface area on the sphere.

The element of surface area in spherical coordinates is ρ2 sinφ dθ dφ. We
can just integrate over the top hemisphere and then double that. Now on
our sphere, ρ = 1, and z = ρ cos φ = cos φ. So our answer is

2
1

4π

∫ π/2

φ=0

∫ 2π

θ=0

12 sin φ cos φ dθ dφ.

This simplifies down to
∫ π/2

φ=0
sin φ cos φ dφ = 1/2 with the substitution

u = sin φ, du = cos φ dφ. The answer is 1/2.

While we’re on the topic of surface area and z, there’s a nice little metaphor
for a result that says that the surface area on the sphere between any two
planes z = a and z = b is directly proportional to b − a: a tomato slicer
cuts the tomato into slices that each have the same amount of skin.

5. Let F(x, y) = yi − xj. Let C be the path going counterclockwise once
about the ellipse x2/9 + y2/4 = 1. Find

∮

C

F · dr.

There are two ways to go at this. One approach is to use Green’s theorem.
The path integral is equal to the double integral over the interior of the
ellipse of ∂N/∂x − ∂M/∂y. Here, M = y and N = −x so that expression
works out to −2. The area of an ellipse is given by a formula quite similar
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to the πr2 formula for the area of a circle, with the twist that instead of a
single radius r the maximum and minimum radius a and b are used. (The
radius measured along the long and short axis, in other words.) Here,
a = 3 and b = 2 so the area is 6π and the answer is −12π.

The other approach would be to evaluate the integral directly by get-
ting a parametrization of the ellipse: x = 3 cos t, y = 2 sin t, with t run-

ning 0 to 2π. That gives
∫ 2π

0
(2 sin ti − 3 cos tj) · (−3 sin ti + 2 cos tj) dt =

−6
∫ 2π

0
sin2 t + cos2 t dt = −12π. The answer is still −12π.

6. Let x(t) and y(t) be functions of t satisfying initial conditions x(0) = 6,
y(0) = 5, and the differential equations

dx

dt
= −y2(t)

dy

dt
= −x2(t).

(a) Find d2x/dt2 in terms of x(t) and y(t). It’s 2x2(t)y(t).

(b) There is (a unique) T > 0 such that y(T ) = 4. Find x(T ). Con-
sider the expression x3(t)− y3(t). This has derivative 3x2(t)dx/dt−
3y2(t)dy/dt = −3x2y2 − 3y2(−x2) = 0. So x3 − y3 isn’t changing. It
starts out at 216− 125 = 91 when t = 0, and when t = T , y = 4 so x
is whatever it has to be to make x3−64 = 91. That is, x(T ) = 1551/3.

(c) Prove that on the interval 0 < t < T , x(t) − y(t) is increasing. The
derivative of x− y is x2 − y2 = (x− y)(x+ y). Now x and y are both
decreasing since their derivative is the in both cases the negative of
a squared quantity. Thus for 0 ≤ t ≤ T , 4 ≤ y ≤ 5, and thus
5 < 1551/3 ≤ x ≤ 6. Since x3 − y3 = (x − y)(x2 + xy + y2) and both
x3 − y3 and x2 + xy + y2 are positive, x − y is also positive. This
means that (x − y)′ = (x2 − y2) = (x − y)(x + y) is a product of
positive quantities and thus positive. Therefore, x − y is increasing.

(d) Prove that T < 1/10. What about T < 1/25? What about T <
1/50? For 0 ≤ t ≤ T , 5 < x ≤ 6, so −36 ≤ y′ < −25. With a
derivative always more negative than −25, it cannot take y as long
as 1/25 to drop by 1, so T < 1/25.

On the other hand, with a derivative always greater than −36, y
cannot decrease by 1 over a t-interval shorter than 1/36. Therefore,
1/36 < T . So 1/50 < T < 1/25 < 1/10.
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