2020 Power Team Texas A&M High School Mathematics Contest October 2020

In the following series of problems there is one or several particles of some masses on the real line at any moment t of time (time takes only integer values). If at moment t there is a particle of mass m at coordinate x, then (except for some special cases mentioned in the problems) the next moment t + 1 it splits into two particles of mass m/2 each: one at coordinate x + 1, and one at coordinate x - 1 (all particles split simultaneously). If two particles of masses m_1 and m_2 meet at the same point of the line, then they merge and we get one particle at that point of mass $m_1 + m_2$.

For example, if at moment t there are particles of masses m_1, m_2, m_3, m_4 at coordinates 1, 2, 3, 4, respectively, and no particles at other coordinates, then the next moment there are particles of masses $m_1/2, m_2/2, (m_1 + m_3)/2, (m_2 + m_4)/2, m_3/2, m_4/2$ at coordinates 0, 1, 2, 3, 4, 5, respectively.

Problem 1. Suppose that at the initial moment t = 0 we have one particle of mass 1 at coordinate 0. Find the masses and coordinates of all particles at the moment t > 0.

Problem 2. How will the answer to Problem 1 change if we have an absorbing screen at coordinate k > 0: every particle that reaches that point is annihilated.

Problem 3. Find the answer when there are two absorbing screens at coordinates k > 0 and l < 0.

Problem 4. What if we have a reflective screen at coordinate k > 0: if a particle is at coordinate k at moment t, then it doesn't split into two particles, but moves instead to coordinate k - 1 at moment t + 1 without changing its mass.

Problem 5. Suppose now that we have a semi-transparent membrane at coordinate k > 0: if a particle of mass m is at coordinate k at moment t, then it is split into two particles next moment t + 1: a particle of mass pm at coordinate k - 1 and a particle of mass qm at coordinate k + 1, where p, q are positive constants such that p + q = 1.

Continued on the next page

In the following problems, we are looking for configurations of points inside a square room that stay as far from one another as possible.

Let Q be a unit square in the Euclidean plane (that is, a square with sides of length 1). Suppose S is a finite set of points inside the square Q (some points may lie on the boundary of Q). We denote by sd(S) the minimal distance between distinct points in the set S. For any integer $n \ge 2$, let d_n be the maximal value of sd(S) over all sets S of n points. A set S of n points inside the square Q is called an **optimal configuration** if $sd(S) = d_n$.

Problem 6. Find the optimal configurations of n points and find d_n for n = 2, 4, and 5. Prove that they are optimal.

Problem 7. The same for n = 3.

Problem 8. Find d_n and an optimal configurations of n = 6 and 8 points. (A rigorous proof is not required.)

Problem 9. Introduce Cartesian coordinates such that the vertices of the square are (0,0), (1,0), (0,1), and (1,1). For $k \ge 1$, let S_k be the set of points with coordinates of the form $\left(\frac{m_1}{k}, \frac{m_2}{k}\right)$ for $0 \le m_1, m_2 \le k$. Prove that for all sufficiently large k the configuration S_k is not optimal.