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Abstract

Male Mexican Free-tailed Bats (Tadarida brasiliensis) attract mates and defend terri-
tory using multi-phrase songs that have a structured set of rules. A subjective view
of their spectrograms shows similarity and dissimilarity between the chirps (a syllable
within the song) of different males. We developed a rigorous algorithm to characterize
the shapes of these chirps. The discrete Fourier transform allowed us to focus on fre-
quency information while a four level Daubechies 2 wavelet decomposition allowed us
to focus on time. For comparison, we compressed large data vectors into a single data
point using multidimensional scaling. Segmenting chirps, to further emphasize ranges
of time and frequency, gave categorizations that most closely resemble the subjective
groupings.

1 Introduction

Even though it is common throughout a large number of animal taxa to use an acoustic
display for both mate attraction and territory defense [5], most terestrial mammals instead
use visual and olfactory displays in sexual selection [2]. Thus, the exceptions found in bats
[3] should be of particular interest to ethologists. In vocal animal communication, one differ-
entiates a song from other acoustic signals if it consists of complex, hierarchical, individual
units [4]. Recent evidence from Bohn et al.[1] showed that the song of the Brazilian free-
tailed bat (Tadarida brasiliensis) did, in fact, have stereotyped and hierarchically organized
phrases which follow a set of rules.

The study by Bohn et al [1] subjectively found three separate, recognizable phrase types
in the songs of T. brasiliensis. The longest phrase type, usually found at the beginning of
songs, was referred to as a chirp and characterized by its repetition of separate type “A”
and “B” syllables. Secondly, the trill, often in the middle of a song, was a phrase type char-
acterized by short, discrete bursts. Lastly, buzzes, while similar to trills, were significantly
longer with more repeated syllables and were often found at the end of songs. A preliminary
observation of their spectrograms found the type “B” syllable from the chirps of different
bats was found to be one of the most distinctive syllables. In order to understand why these
syllables fall into different categories and what their significance is, it would be beneficial to
have an algorithm for categorizing the chirps used in each song of each bat.



2 Background

2.1 Energy

In signal processing, calculating the energy of the signal can compress a large amount of
information into one point of data. This is done with the equation,
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where each sample in the signal is represented with y; and the total signal length is n.
To clarify, the term “energy” used in signal processing should not be confused with the
same term used in physics. While the two may be related, we only use energy as a method
of information compression between similarly manipulated signals and, thus, its physical
characteristics are not relevant to this study.

2.2 Fourier Analysis

Fourier analysis is one of the most common mathematical techniques used in signal
processing. The Fourier transform is an equation that converts a function, usually repre-
sented in the time domain, into one that is represented, instead, in the frequency domain.
However, because digital recording equipment cannot take a continuous sample of an audio
signal, it must be converted using a specific Fourier transform known as the discrete Fourier
transform. This is done with the equation,
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where y = {y;}32_, is a n-periodic sequence of complex numbers (the original signal),

and § = {Qk}z;é is the transformed signal sequence. Because y is n-periodic, y; = yj1n
for any integer j, and thus, we are only concerned with the subsequence {yo,y1, ..., Yn—1}-
Therefore, a non-periodic audio recording can be represented as a discrete, finite sequence,
as only one period is needed for the discrete Fourier analysis.

Because n? calculations are required for the discrete Fourier transform, there is an al-
gorithm used to reduce the number of calculations involved to 5nlogon, known as the fast
Fourier transform. However, this algorithm can only be used when n is even and, because
it can be iterated, it is most efficient when n = 2™ for some positive integer m. If we let
n = 2N, then the discrete Fourier transform can be separated into the sum of the even
indices plus the sum of the odd indices, or

n—1 N-1 N-1
Gk = Zyje(—Zﬂ'ijk)/n — Z y2je2j(—2ﬂ'ik)/n + Z y2j+16(2j+1)(—2ﬂ'ik)/n
j=0 j=0 =0

and, therefore,
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Because 2™ nodes will be rarely be recorded exactly, the signal can become 2™-periodic by
setting y, = 0 for all integers n < g < 2™ for the least value of m where 2" > 0.

Through this transformation, it is possible to quantify the frequencies that most strongly
characterize a bat’s chirp. Using the Matlab command £fft(), we can take a signal vector
as an input and give the transformed vector of complex numbers as an output. Thus, the
magnitude of each element in the vector must be taken for proper visualization purposes.
Figure 1 shows the recorded audio signal of a type “B” chirp and its transformed counterpart.
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Figure 1: The original signal from one type “B” chirp and its fast Fourier transform.

2.3 Wavelet Analysis

While frequency data is generally very important in signal processing, it is often also
critical to consider the time at which these frequencies occur. Because the discrete Fourier
transform gives the signal in only the frequency domain, we lose the time data that was
present in the original signal. However, wavelet analysis, can be used when both time and
frequency data are relevant. Through the wavelet transform, a signal can be decomposed
into multiple sequences of coefficients, separated by frequency ranges and still preserving
the time domain.

Two functions, the scaling function ¢ and the wavelet function 1, are used to generate
a family of functions that can express a deconstructed signal. After applying a filtering
algorithm to a signal f of length N, it can be represented with two sequences of coefficients.
One sequence, the first level detail coefficients (d;), is of length N/2 and represents the
highest octave of frequencies present in the signal, while the other, the first level approxi-
mation coefficients (aq), is of length N/2 and represents all the lower frequencies remaining
in the signal. Afterward, we find that f = dy + a1, and very little, if any, data is lost in
this transform. Conveniently, this process can be iterated on the approximation coefficient
to give us data on the next highest octave with the sequence ds, and the frequencies below
it with the sequence as. This can be iterated as long as the length of the approximation
coefficients can be divided. Thus, after a decomposition, f = Z?Zl d; + ay.

Because a wavelet often needs to have certain properties or shapes, there are many va-
rieties of wavelets from which we can choose. We focus on Daubechies wavelets, a family of



orthogonal wavelets, and more specificically, Daubechies 2 wavelet, as this is both continuous
and can detect the sharper spikes of discrete data. Figure 2 shows a graphical representation
of bat chirp and its four level Daubechies 2 decomposition.
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Figure 2: The original signal of a bat chirp, its level 4 approximation, and its first 4 sequences
of detail coefficients.

2.4 Spectrogram Analysis

A specific extension of the discrete Fourier transform that also considers both time and
frequency is known as the short-time Fourier transform. Using a windowing function, w(m),
the transform is defined as
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where n € N is the window size, and 6 € R is frequency. The output of this algorithm is
a discrete Fourier transform of several smaller time segments throughout the signal. The
magnitude of each of discrete Fourier transform can be plotted vertically at each point in
time, giving a three dimensional visualization called a spectrogram. Using a range of colors,
it is possible to represent spectrograms on a two dimensional graph like shown in Figure 3.

Unfortunately, the short-time Fourier transform outputs large amounts of information,
making it difficult to categorize. While we may be interested in the overall “shape” of these
spectrograms, they are not conveniently made for comparison. Thus, other techniques, such
as the Fourier transform and Wavelet analysis are preferred in this study.
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Figure 3: Spectrogram of of a bat chirp.

2.5 Multidimensional Scaling

In order to make a comparison within and between the different bat chirps, a data
compression method can be used to visualize the similarity or dissimilarity between n objects
in N dimensions. Multidimensional scaling represents a set of N-dimensional distances with
much lower dimensional distances, or d;; =2 d;;, where d;; is the estimated distance and 4;; is
the actual N dimensional distance, for all objects i, j. The N-dimensional distance between
two objects ¢ and j can be calculated using the norm,

8ij = (i — v3) (wi — y;)]*? (1)

where y; and y; are column vectors and (y; — y;)’ is the transpose of (y; — y;). This can be
used to find the distance between all objects in the distance matrix,
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Assuming that we want to express the distance in k dimensions, this square matrix is used to
calculate another square matrix B, who’s two greatest eigenvalues and corresponding eigen-
vectors are used to create a k X n matrix that approximates the distances in £ dimensions.
When this is plotted, assuming that the k greatest eigenvalues represent a large portion of
the information, the similarity between n objects can be visualized in k& dimensions.

3 Data

3.1 Study Animals

The bats used in this study were either collected from a colony in College Station, Texas
or from one in Austin, Texas and were kept in a vivarium at Texas A&M in accordance with



the NIH guidelines for experiments involving vertebrate animals. Full songs were recorded
within this vivarium for a previous study, and it was from these which we obtained the 25
“type B” chirps we analyzed for each bat. In the initial stage of our study, we used only the
chirps from a total of 29 different Brazilian Free-tailed Bats (three of which were recorded
in two sets over two years and one of which was recorded in three sets over three years). In
the the second stage, we used 10 “type B” chirps from an additional four bats.

3.2 Preparatory Editing

In SIGNAL 4.04, we used a gate detection algorithm to determine the beginning and end
of these syllables. After cutting these to the proper length, we tapered both the beginning
and the end of the signal so that these syllables could be properly isolated. Next, we
added ten milliseconds of zeros on both the beginning and end of the signal. Because the
sample rates varied between a number of signals, we resampled each to 250 kilohertz (kHz)
in SIGNAL 4.04. We then applied a lowpass filter at 80 kHz and a highpass filter at 1
kHz below the fundamental frequency. To ensure that later comparisons weren’t biased by
signal length, we normalized them so that the root square mean (RMS) for each was one
volt. Lastly, each signal was exported as a Waveform Audio File Format (”.wav”) for later
comparison.

4 Strategies

4.1 Pure Signal

Because each signal initially contained a large, varying number of data points, we applied
a segmenting technique in order to compress each signal into as little data as possible. This
was beneficial because not only did it give us less data, but it also gave us an equal number
of data points in each signal to compare. Ideally, by determining which time segments have
the greatest amount of energy, we should be able to have some numerical estimate of the
signal’s shape.

To do this, we used Matlab to cut each signal into ten segments of equal length. After
calculating the energy in each of the 10 segments, we exported a 10-dimensional vector of
energies for each chirp. In Stata 11.1, we compiled all chirp vectors into one large matrix
and performed a multidimensional scaling.

Taking only the first dimension, we attempted then to estimate the shape of each signal
in a single data point. Comparing this one dimensional representation between all chirps,
the effectiveness of this segmenting technique could be assessed. While our comparisons
were surprisingly accurate for such simple segmenting, many signals that do not appear to
be similar in subjective categorizations did appear to be similar according to this estimation
(Figure 4). Therefore, this method was not satisfactory.

4.2 Fast Fourier Transform

Since the inaccuracy in the first strategy might have come from the fact that the sig-
nals were only divided into time segments, properly categorizing the chirps might require
segmenting by frequency as well. Thus, after dividing the signal into ten equal segments,
we further divided these segments into fifteen frequency segments. This was done by first
using the fast Fourier transform function in Matlab on each segment. Then, in the frequency
domain, it was possible to separate the segments into 10 kHz ranges. Calculating the energy
in each of these 150 segments per chirp, we exported 150-dimension vectors.

After all vectors were compiled in Stata, we performed a multidimensional scaling to
compress the signals into one dimension. When these were plotted, the desired subjective
categories were even more even less evident (Figure 5). This is likely because either the
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Figure 4: Fach “type B” chirp was divided into ten equally sized segments. A multidimen-
stonal scaling was performed on the calculated energies in each segment. The average values
and standard errors for each bat are shown.

10 kHz frequency segments were too thin, or the lowest and most of the highest frequency
segments contained little energy information.

4.3 Wavelet Decomposition

Wavelet decomposition is another signal processing technique that can divide the chirps
into frequency segments. In this strategy, after we divided a signal into ten segments of
equal length, we performed a four level Daubechies 2 wavelet decomposition on each in
Matlab. This divided each tenth segment into four octave sequences of detail coefficients
and a sequence of fourth level approximation coefficients. Once we calculated the energy in
each of these segments, we exported a 50-dimensional vector for each chirp.

After compiling all vectors into Stata, we performed a multidimensional scaling on all
the data. Plotting the first dimension, we found that, while categories weren’t necessarily
distinct from one another, they did appear to be organized in a manner that reflects the
shape of their spectrograms (Figure 6). This first dimension allowed us to categorize these
signals into four different shapes that were observed in their spectrograms.

The success in this strategy most likely lies in the fact that it divides the signal by
octave. In the chirps of these bats, more unique information is found in lower frequencies.
Thus, because wavelet decomposition divides each signal by octaves, which occur more often
at lower frequencies, our method using wavelet decomposition is able to focus on the most
important information. If we were able to determine which frequencies are actually the most
important in these chirps, we might be able to widen the gap between these categories.
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Figure 5: Fach “type B” chirp was divided into ten equally sized segments. A fast Fourier
transform was used to divide each of these into 15 frequency segments. Next, a multidimen-
sional scaling was performed on the calculated energies in each segment. The average values
and standard errors for each bat are shown.
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Figure 6: Fach “type B” chirp was divided into ten equally sized segments. A wavelet decom-
position was used to divide each of these into four detail segments and one approrimation
segment. Next, a multidimensional scaling was performed on the calculated energies in each
segment. The average values and standard errors for each bat are shown.



