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This paper analyzes the stability of a coexistence equilibrium point of a model for competition between two
stage-structured populations. In this model, for each population, competition for resources may affect any
one of the following population parameters: reproduction, juvenile survival, maturation rate, or adult
survival. The results show that the competitive strength of a population is affected by (1) the ratio of the
population parameter influenced by competition under no resource limitation (maximum compensatory
capacity) over the same parameter under a resource limitation due to competition (equilibrium rate) and (2)
the ratio of interspecific competition over intraspecific competition; this ratio was previously shown to
depend on resource-use overlap. The former ratio, which we define as fitness, can be equalized by adjusting
organisms’ life history strategies, thereby promoting coexistence. We conclude that in addition to niche
differentiation among populations, the life history strategies of organisms play an important role in
coexistence.

T
he dynamics of competition between two species have been studied extensively, but few of these prior studies
have incorporated variation in life history strategies between competing populations. Here, we present a
mechanism for the coexistence of populations with different life history strategies (species). The classic

Lotka-Volterra competition model1 predicts that unless competition between two species is weak, the population
that has a competitive advantage will exclude the other; this is also known as the competitive exclusion prin-
ciple2,3,4. In order for two species to coexist, their interspecific competition must be weaker than their intraspecific
competition (stabilizing mechanism)5. However, the amount of stabilization required for coexistence can be small
if the difference in average fitness between the two species is small (equalizing mechanism)5. In other words,
strong stabilization alone or weak stabilization plus strong equalization is required for species coexistence.

Many sympatric populations do not compete for a single resource, which means that stabilization maintains
their coexistence. However, one of the interesting questions in ecology is how sympatric populations that do
compete strongly with each other (i.e. cases in which interspecific competition is only slightly weaker than
intraspecific competition) can coexist. This question may be reduced to the goal of determining how the average
fitness associated with two species is equalized.

Fitness is a function of an organism’s life history parameters within its environment (e.g. ref. 6) assuming no
individual heterogeneity within species beyond stage differences. There is clearly a diverse range of life history
strategies among species: e.g. some mature early (precocious) while others delay maturation; some adopt semel-
parous reproductive strategies while others are iteroparous; and some are long-lived and others short-lived. We
call this type of diversity demographic biodiversity. Although demographic biodiversity is expected to have
profound effects on interactions between species, it has been largely overlooked in theoretical studies containing
multiple species (exceptions include refs. 7, 8, 9, 10). A previous study10 examined a model similar to the one
discussed in this paper. Their numerical analysis used two-stage Ricker models11, assumed only individuals in the
same stage of two populations (i.e. between adults and between juveniles of two populations) compete with each
other, and showed the possible asymptotic outcomes, but did not derive the criteria for the outcomes. Here, we use
two-stage Beverton-Holt models12, which can be derived by assuming competition for available resources, and
derive analytical criteria for existence and the stability of coexistence equilibria. This allows us to interpret the
criteria in terms of biological processes. Finally, we show how demographic biodiversity can equalize the fitness of
two species, thereby promoting their coexistence. To our knowledge, other previous attempts used models that
are special cases of our models (e.g. refs 7, 8, 9).

We analyze a model that is comprised of two stage-structured populations of different species that experience
competition for available resources at some life stage. Although the classic Lotka-Volterra competition model is
formulated in continuous-time equations, we use a discrete-time model in order to include stage structured

SUBJECT AREAS:
ECOLOGY

BIODIVERSITY

BIOLOGICAL SCIENCES

THEORY

Received
10 August 2011

Accepted
22 September 2011

Published
5 October 2011

Correspondence and
requests for materials

should be addressed to
M.F. (fujiwara@tamu.

edu)

SCIENTIFIC REPORTS | 1 : 107 | DOI: 10.1038/srep00107 1



populations. The dynamics of discrete-time stage-structured popu-
lation models of this type have been thoroughly studied (see ref. 13).
A discrete-time version of the Lotka-Volterra competition model
with the Beverton-Holt type density dependence12 has also been
studied and shown to exhibit the same asymptotic dynamics as that
of its continuous counterpart7. Here, we combine these two classes of
models to construct a family of discrete-time, stage-structured com-
petition models and develop a fitness measure that is useful in deter-
mining the resulting dynamics. We then relate asymptotic dynamics
of the competition model to the life history strategies of the compet-
ing populations.

The rest of the paper is structured as follows. First, we describe a
single-species stage-structured model and its asymptotic dynamics.
Second, we develop a two-species model in which competition affects
juvenile survival of one species and adult survival of the other.
Third, we generalize the analysis by varying the population para-
meters (possibly different life history parameters for each of the
two populations) affected by competition. Finally, the model results
are discussed in the context of existing ecological theories of two-
population competition.

Results
Stage-structured population model: single population. The com-
petition model consists of two stage-structured population models
coupled by a resource limitation that affects one life history rate in
each population. Each stage-structured population model (Fig. 1)
consists of two developmental stages: juveniles (stage 1) and adults
(stage 2). In this model, for population i, juveniles survive with rate si

and develop into adults with rate mi, while adults survive with rate pi

and reproduce at fertility rate fi. The fertility rate is the number of
offspring per adult times their rate of survival to the age of one year.
The matrix Ai associated with this life history is given by

Ai~
si 1{mið Þ fi

simi pi

� �
: ð1Þ

This matrix, which is termed a population matrix, transitions a

population vector, n~
n1

n2

� �
, from time t to t11 as

n1

n2

� �
tz1

~
s1 1{mið Þ fi

simi pi

� �
n1

n2

� �
t

, ð2Þ

where n1 and n2 are the stage densities of juveniles and adults,
respectively, and t denotes time. See ref. 13 for general descriptions
of matrix population models.

The above stage-structured model has been used by ref. 14 to
incorporate the different life history strategies of organisms. For
example, when mi approaches 1, individuals tend to mature early
(precocious), but when mi approaches 0, individuals delay matura-
tion (delayed). Similarly, when pi approaches 1, individuals repro-
duce repeatedly (iteroparous), but when it approaches 0, individuals
reproduce a small number of times or only once (semelparous).

Furthermore, we can change the distribution of survivorship from
birth to reproduction by changing fi and si (note that fi is the number
of offspring times their survival over one time unit), and we can alter
the life expectancies of individuals by changing fi, si, and pi.
Therefore, this two-stage model is one of the simplest stage-struc-
tured population models that can incorporate a wide range of life
history strategies.

Density dependence. In the current study, any of the four population
parameters in equation (1) may experience density dependence
(non-linearity) due to resource limitation. Hereafter, this density
dependence is termed intraspecific competition. For a population
parameter, which is generally denoted by xi, where xi is si, mi, pi, or
fi, the intraspecific competition is modeled as

xi nð Þ~ ai

1zbink
, ð3Þ

where ai is the maximum of xi at a low stage density, bi is the effect of
stage density (density of a given stage) on rate x, and k denotes the
stage (1 for juvenile and 2 for adult). We use function notation xi(n)
as a reminder of density dependence throughout the paper. Whether
the rate is a function of juvenile or adult density depends on which
population parameter is affected by the intraspecific competition. It
is assumed that intraspecific competition among juveniles affects the
population parameters in the left-hand column of the population
matrix (si and mi), while competition among adults affects the para-
meters in the right-hand column (fi and pi). Ecologically, this implies
that juveniles and adults have separate niches.

Equation (3) is the Beverton-Holt density dependence12. We
choose this form because it can be derived by assuming competition
among individuals for an available resource; this is arguably one of
the most common types of intraspecific competition experienced by
animals, and it is equivalent to the type of competition included in
the classic Lotka-Volterra competition model. Furthermore, the
Beverton-Holt density dependence leads to stable asymptotic
dynamics. Here, we define ai as the maximum compensatory capa-
city of xi and bi as the intraspecific competition strength.

Parameter constraints. The dominant eigenvalue, lD, of the popu-
lation matrix (equation 1) can be solved analytically as

lD~
1
2

szp{msz
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mszp{sð Þ2z4fms

2

q� �
: ð4Þ

Here, the subscripts for population i are omitted to avoid clutter. Any
one or more of the parameters in the population matrix can experience
intraspecific competition. However, due to the magnitude restrictions
on the life history parameters, the dominant eigenvalue is 1 at the non-
trivial equilibrium point (i.e. when the population is at a positive equi-
librium). Therefore, when we set lD51, the four population parameters
at an equilibrium must satisfy the following relationship

1~
1
2

szp{msz
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mszp{sð Þ2z4fms

2

q� �
: ð5Þ

This equation can be analytically solved for any of the four para-
meters. Figure 2 shows the relationship among three population para-
meters under lD51 when the other parameter, which is indicated by
superscript (c) in the figure legend, is fixed at some constant value.

The eigenvector associated with the dominant eigenvalue gives the
asymptotic distribution of the stage densities between the two stages.
Therefore, at the positive equilibrium n�~ n�1 n�2½ �T, the stage 1
and stage 2 densities satisfy

n�1~
1

2ms
s{p{msz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mszp{sð Þ2z4fms

2

q� �� �
n�2: ð6Þ

Equation (6) shows that, under a given set of population para-
meters and the population being at a positive equilibrium point, the
state of the population can be expressed in terms of a scalar density.

Figure 1 | Lifecycle graph of the two-stage population model. The nodes

represent (1) juvenile and (2) adult stages. Solid arrows show the potential

transitions of individuals from one time to the next, while the dashed

arrow indicates fertility (number of offspring per adult times the survival of

the offspring to reach stage 1).

www.nature.com/scientificreports
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In addition to the above relationships at the positive equilibrium,
there are also trade-offs between population parameters (e.g. ref. 6).
For example, juveniles optimize their energy/resource allocation
between surviving and developing into the adult stage, while adults
optimize their energy/resource allocation between reproduction and
survival. Although the energy/resource allocation is an active area of
research (e.g. ref. 15), the trade-off function is not yet well-under-
stood. Here, we simply suggest that it is not plausible to have either
high juvenile survival and fast development or high adult survival
and high fertility (Fig. 2).

Stage-structured competition model: two populations. The stage-
structured population model consists of four population parameters
(si, mi, pi, and fi), any one of which may be affected by intraspecific
competition. If another population uses the same resource and that
particular resource limits one of the four population parameters for the
second population, then there is interspecific competition. Because the
parameters affected by the resource may be different for the two
populations (e.g. the limitation could affect the fertility of population
1 but the maturation rate of population 2), there can be 10 different
interactions between the two populations. First, we develop and ana-
lyze a model in which a potential resource limitation affects the juven-
ile survival of one population and the adult survival of the other
population. Then, we will generalize the results for the other cases.

To build the competition model, we start with the constant, four-
by-four matrix M consisting of two population matrices (equation 1)
in block-diagonal entries

M~

s1 1{m1ð Þ f1 0 0

s1m1 p1 0 0

0 0 s2 1{m2ð Þ f2

0 0 s2m2 p2

2
6664

3
7775: ð7Þ

Hereafter, we will call this a competition matrix. The competition
matrix simultaneously transitions the stage densities of the two

populations. Therefore, the first, second, third, and fourth compo-
nents of the vector, which we term a community vector, are the
density of juveniles in the first population (n1), the density of adults
in the first population (n2), the density of juveniles in the second
population (n3), and the density of adults in the second population
(n4), respectively.

The competition matrix is a block diagonal matrix, which has
some properties that simplify the analysis. First, the eigenvalues of
the matrix are given by the eigenvalues of two submatrices (i.e.
eigenvalues of individual population matrices). Second, the eigen-
vectors have the following form:

w1 w2
0 0

0 0

0 0

0 0
w3 w4

2
6664

3
7775 ð8Þ

where w1 and w2 are the (column) eigenvectors of the upper left sub-
matrix and w3 and w4 are the (column) eigenvectors of the lower right
submatrix. Each population matrix is a nonnegative, irreducible, and
primitive matrix when pi.0 or mi,1. This ensures that each submatrix
has a dominant eigenvalue that is real, and its magnitude is greater than
that of the subdominant eigenvalue13. When pi50 and mi51, the mag-
nitude of the two eigenvalues are the same. This is the case in which an
organism is semelparous and reproduces only at age 2. Therefore, the
necessary condition for the coexistence of two populations is that the
dominant eigenvalues of the two submatrices are 1 at the equilibrium
point. Finally, when the stage densities are at the equilibrium point,
stage distribution is proportional to the eigenvectors associated with the
dominant eigenvalues of the submatrices. We take advantage of these
properties with the analyses of the competition matrix.

Competition affecting the juvenile survival of one species and
adult survival of the other: Existence of a non-trivial equilibrium.
In this section, we assume that the juvenile survival rate of one

Figure 2 | The relationships among three population parameters that are constrained by the fourth population rate being maintained at a low value (i.e.
low equilibrium rate) and lD51. (a) Maturation rate (contour lines) as a function of fertility and adult survival for maintaining a low equilibrium juvenile

survival rate (s(c)50.1). (b) Adult survival rate (contour lines) as a function of juvenile survival and maturation rate for maintaining a low fertility rate

(f(c)50.1). (c) Juvenile survival (contour lines) as a function of fertility and adult survival for maintaining a low maturation rate (m(c)50.1). (d) Fertility

rate as a function of juvenile survival and maturation rate for maintaining a low adult survival rate (p(c)50.1). The darker shaded areas indicate that lD

cannot be 1, while the lighter shaded areas serve as a reminder that certain portions of parameter space are implausible due to the trade-offs between the

two population parameters that are indicated on the axes (see text).

www.nature.com/scientificreports
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population and the adult survival rate of the other population are
limited by the same resource. Therefore, s1 and p2 are affected by both
inter- and intra-specific competition, which are given as

s1 nð Þ~ a1

1zb11n1zb21n4
, ð9Þ

p2 nð Þ~ a2

1zb12n1zb22n4
, ð10Þ

where bij is the effect of population i on j, and is termed interspecific
competition strength. These terms are maximized at aj when the
juvenile density of the first population and the adult density of the
second population (two competing stages) are low. These rates, s1(n)
and p2(n), are reduced as one or both of the stage densities are
increased with the rate of the reduction determined by bjj and bij.

To determine the stability of an equilibrium point of a discrete-
time system, a common approach is to find a linearized matrix
around the equilibrium and calculate the dominant eigenvalue of
the matrix. Unfortunately, although it is simple to find the linearized
competition matrix, it is not trivial to obtain an analytical expression
of its dominant eigenvalue unless one or both of the populations are
at zero. Therefore, we analyze the model using the isocline method7.
This method uses lines where lD51, lines of no population growth to
display the existence and stability of equilibrium points. This is a
discrete-time equivalent to the isocline method that is commonly
used for determining the stability of the continuous-time Lotka-
Volterra competition model.

At a non-trivial equilibrium, the dominant eigenvalue of each
population matrix is 1. It is satisfied when

s1~
1{p1

f1m1z 1{m1ð Þ 1{p1ð Þ , ð11Þ

p2~
1{s2 1zf2m2{m2ð Þ

1zs2 m2{1ð Þ : ð12Þ

These equations are obtained by solving equation (5) for si and pi.
Hereafter, the juvenile and adult survival rates that satisfy equations
(11) and (12) are denoted by s(c)

1 and p(c)
2 , respectively. We then

determine the isoclines (i.e. the lines on which the dominant eigen-
value of a population matrix is 1) using the following two equations:

n1~
1

b11

a1

s(c)
1

{1{b21n4

 !
, ð13Þ

n1~
1

b12

a2

p(c)
2

{1{b22n4

 !
, ð14Þ

which determine the isoclines for the first and second populations,
respectively. These are obtained by solving equations (9) and (10) for
n1 and substituting s(c)

i and p(c)
2 , respectively. Four of the possible geo-

metries of the two isoclines are shown in Figure 3. The location where
two isoclines intersect is the non-trivial equilibrium point. It should be
noted that equations (13) and (14) give necessary conditions for there
to be a non-trivial solution for the nonlinear, four-by-four system of
equations that express an equilibrium for the density-dependent
model. These conditions are not generally sufficient to conclude that
such equilibrium solutions exist, but we show in Methods that when the
Beverton-Holt density-dependence model is applied to any of the four
basin system parameters, a non-trivial equilibrium will exist.

Stability of the coexistence equilibrium. In Figure 3, the solid lines
are the isoclines for population 1, the dashed lines are the isoclines for
population 2, and the arrows show the directions of the transition by
the competition matrix when the two populations are close to the
stable stage distribution (i.e. asymptotic distribution). Three qualita-
tively different equilibrium points exist: both populations are at zero
(extinction); one population is at zero and the other is positive
(exclusion); and both populations are positive (coexistence). It is
clear that extinction is always unstable as long as there are isoclines

Figure 3 | Isoclines (lines on which lD51) of our model for competition between two stage-structured populations. The solid lines indicate isoclines

associated with population 1, while the dashed lines are associated with population 2. (a) The equilibrium for coexistence is stable. (b) The equilibrium for

the exclusion of population 2 is stable and there is no equilibrium for coexistence. (c) The equilibrium for the exclusion of population 1 is stable and there

is no equilibrium for coexistence. (d) The equilibria at both exclusion states are stable, and the equilibrium for coexistence is unstable, exhibiting

alternative steady states. Stable equilibrium points are indicated by circles, and unstable equilibrium points are indicated by crosses. The arrows show the

directions of the transition by the competition matrix when the two populations are close to the stable stage distribution.

www.nature.com/scientificreports
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for the two populations. However, it should be noted that extinction
can be stable when neither population has an isocline in the positive
quadrant.

Figure 3 only shows isoclines as a function of two stages (n1 and n4)
but not others (n2 and n3). This is because the competition terms
depend only on these two stages in the model. They are the only
stages that directly affect the population parameters, thus the asymp-
totic population growth rates. Any perturbations to the four stages,
including n2 and n3, are projected as perturbations to n1 and n4;
therefore, n1 and n4 can also be viewed as functions of past n2 and
n3. The system will be either attracted to or repelled from the equi-
librium point defined by n�1 and n�4. When the system is attracted to
the equilibrium point, n2 and n3 will also be attracted to the values
determined by the eigenvector associated with the dominant eigen-
value (which is 1) of each submatrix because of the properties of the
community matrix.

The conditions for stable coexistence can be expressed in terms of
population parameters (Methods) as

b12
a1

s(c)
1

{1

 !
vb11

a2

p(c)
2

{1

 !
ð15Þ

and

b22
a1

s(c)
1

{1

 !
wb21

a2

p(c)
2

{1

 !
: ð16Þ

Because the method for determining the stability in this study is
not a common approach, we also numerically calculated the dom-
inant eigenvalue of the linearized community matrix around the
non-trivial equilibrium point. When the dominant eigenvalue is less
than 1, the equilibrium point is asymptotically stable. The result was
compared with the prediction from conditions (15) and (16). This
procedure was repeated more than 100,000 times with randomly
selected population parameters. Under all simulations, the predic-
tions from the conditions (15) and (16) were consistent with the
eigenvalue of the linearized community matrix.

The term
ai

x(c)
i

{1

 !
in conditions (15) and (16) represents an

excess production of juveniles and adults by population 1 and 2,
respectively. The term s(c)

1 is the juvenile survival rate and a1 is the
maximum survival rate when the density of individuals utilizing
the resource is very small (maximum compensatory capacity) while
the term p(c)

2 is the adult survival rate and a2 is the maximum survival
rate when the density of individuals utilizing the resource is very
small (maximum compensatory capacity). In general, x(c)

i is a func-
tion of the other population parameters that define the life history
strategy (equation 5). The term ai determines how well the population
performs when the resource is abundant and must satisfy aiwx(c)

i .
Because this term determines the average performance of individuals
under the environmental conditions they experience and their life

history, we define this excess production term
ai

x(c)
i

{1

 !
as the aver-

age fitness of individuals associated with population i.

Stability criteria. The conditions for stable coexistence are formu-
lated similarly to the conditions found under the unstructured Lotka-
Volterra competition model (e.g. refs. 5, 7). Therefore, interpreta-
tions of the Lotka-Volterra competition model can be directly
applied to the results herein. This allows strong connections between
the current results and existing ecological theories of two-population
competitions. According to conditions (15) and (16), intraspecific
competition (bii) must be stronger than interspecific competition
(bij) in order for the two populations to coexist. It has been shown
that the relative strengths of the two competition terms are deter-
mined by the resource-use overlap under the classic Lotka-Volterra
competition model, and this was termed a stabilizing effect5.

However, this stabilization can be small if the maximum per capita
growth rate of the population relative to the rate at which this growth
rate declines with the density, which was also termed fitness in ref 5,
is similar between two populations, and this mechanism was termed
an equalizing effect5. Similarly to previous results, our results suggest
that when the excess production terms, which we define as the fitness
terms in our model, between the two populations are close to each
other, only a small level of stabilizing effect is needed for the coex-
istence of the two populations. On the other hand, if the fitness

associated with population 1
a1

s(c)
1

{1

 !
in our model becomes much

greater than that of population 2
a2

p(c)
2

{1

 !
, the direction of

inequality reverses (Fig. 3b), and population 1 always excludes
population 2. Similarly, if the fitness associated with population 2
becomes much greater than that of population 1, the direction of
inequality reverses (Fig. 3c), and population 2 always excludes popu-
lation 1. Finally, if interspecific competition (bij) becomes stronger
than intraspecific competition (bii) for both populations, the direc-
tions may switch for both inequalities (Fig. 3d). If this occurs, the two
exclusion equilibria are both stable, and the final state depends on the
initial population densities (alternative steady states).

The new criteria developed in this analysis include the fitness
terms that are also explicit functions of life history parameters allow-
ing us to interpret the criteria in terms of the population parameters.
The fitness increases with the maximum compensatory capacity of
the juvenile or adult survival rate and decreases with the equilibrium
rate. In other words, organisms that have a high potential for survival
under low resource competition but do not depend on this high
survival rate at an equilibrium (i.e. at the carrying capacity of the
environment) are competitively superior. Under the assumption that
the maximum compensatory capacities associated with juvenile sur-
vival of population1 and adult survival of population 2 are close to 1
(or similar between the two), the fitness increases when the equilib-
rium rate decreases.

The equilibrium juvenile survival rate (s(c)
i ) is maintained at a low

level by two general life history strategies (Fig. 2a): (1) a high adult
survival rate (pi) or (2) when the adult survival rate is low, a high
fertility rate (fi) or a reduced fertility rate that is compensated for by
an increased maturation rate (mi). In Figure 2a, when the adult
survival rate is high, the maturation rate (contour line) is low, and
fertility (vertical axis) can also be low. Any increase in either or both
of these values will allow further reduction in the equilibrium juven-
ile survival rate. Therefore, high adult survival is one sufficient life
history strategy. On the other hand, when the adult survival rate is
low, there must be a sufficiently high fertility rate or maturation rate
in order to maintain a low juvenile survival rate at the coexistence
equilibrium. In other words, strategies to maintain a large number of
individuals in an adult stage or to increase the number of individuals
maturing are more advantageous.

On the other hand, the adult survival rate at the coexistence equi-
librium (p(c)

i ) is maintained at a low level by two general life history
strategies: (1) high fertility rate or (2) high juvenile survival rate
(Fig 2d). Figure 2d shows that when the fertility rate is high, the
juvenile survival and maturation rate can be low. Any increase in
either or both of these values will allow further reduction in the
equilibrium adult survival rate. Similarly, when the juvenile survival
rate is high, both maturation and fertility rate can be low although
there is some trade-off between the two. In other words, a strategy to
accumulate individuals in the juvenile stage is more advantageous.

Stability of the coexistence equilibrium in the general two species
competition model. The results in the previous section, in which the
juvenile survival rate of one population and adult survival rate of the
other exhibit density dependence, can be generalized to other cases,
including those in which competition affects different population

www.nature.com/scientificreports
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parameters. Here, rates s1 and p2 are simply replaced with si, mi, pi, or
fi, and isoclines can be plotted against stages that are directly affected
by the competition. As long as the directions of the arrows on the
isocline figures remain the same, the results in the previous section
hold. This is the case when the dominant eigenvalue of the popu-
lation matrix (equation 1) evaluated at the equilibrium is an increas-
ing function of the population parameters. This condition is satisfied
for si, pi, and fi because these parameters are always positively assoc-
iated with an entry in a population matrix. Furthermore, the deriv-
ative of lD with respect to mi at lD51 is always positive (Methods).

The effects of resource limitation in each of the four population
parameters are summarized in Table 1. When the fertility rate (fi) is
affected by a resource limitation, high adult survival can compensate
(Fig. 2b). Alternatively, high juvenile survival with some tradeoff
between adult survival and maturation rate can also maintain high
fitness. The fertility rate is unique in that its maximum compensatory
capacity ai can be higher than 1. However, this does not mean that
organisms that maximize the number of offspring (fecundity) are
always at a competitive advantage because the fertility term is the
product of fecundity and offspring survival until age 1. Some organ-
isms may produce a large number of offspring with relatively low
survival, while others may produce fewer offspring with relatively
high survival16. The maximum compensatory capacity can be
increased effectively by optimizing the trade-off between the two
parameters rather than by simply increasing fecundity.

If the maturation rate (mi) is affected by a resource limitation,
fitness is high when individuals can mature early without a resource
limitation (high maximum compensatory capacity) but do not need
to mature early when the stage density is saturated at an equilibrium
(low equilibrium rate). A low equilibrium maturation rate can be
achieved by a high juvenile survival rate (Fig. 2c), but as the juvenile
survival rate decreases, the trade-off between adult survival and fer-
tility becomes stronger. When the juvenile survival and maturation
rates are very low, only a high adult survival rate can maintain a stable
coexistence equilibrium.

Discussion
Here, we extended the classic Lotka-Volterra competition model to
include stage structures within each of two competing populations
and show that organisms can change competitive strength by adjust-
ing their life history parameters. In particular, we find that equilib-
rium rates are a function of the life history parameters that are not
directly affected by resource limitation. By adjusting these para-
meters, organisms can maximize their fitness under various beha-
vioral, morphological, physiological, and environmental constraints.
This, in turn, promotes the coexistence of the two populations. The
premise in the last argument is that maximization of fitness in the
presence of constraints will tend to equalize fitness among competing

populations under resource constraints. Although this makes intu-
itive sense, further research into life history trade-offs under various
constraints will be needed to firmly link fitness maximization to
equalization. For example, investigating how organisms increase
the fertility rate by optimizing the number and quality of their off-
spring, and determining a range of feasible fertility rate for given
organisms may be interesting topics.

The coexistence of two species is typically attributed to niche
differentiation (stabilization)5. However, although our model does
require some stabilization in order for the two species to coexist, this
stabilization can be small if the two species have similar levels of
fitness (equalization), and their differences in life history can pro-
mote equalization. Equal fitness between two species is equivalent to
there being neutrality between them17. Therefore, we suggest that the
question of whether stabilization or equalization is more important is
equivalent to asking which is more important, niche differentiation18

or neutrality17. Another important contribution of the current study
is our finding that demographic biodiversity can promote equaliza-
tion, which contrasts with the general notion that demographic bio-
diversity reduces neutrality.

The model examined in this study assumes that the population
parameters that are unaffected by competition are constant on an
ecological time-scale. In reality, however, density dependence affects
multiple population parameters and changes the rates. For example,
a competition that strongly affects juvenile survival will reduce its
density, which will lead to subsequent reduction in adult density.
However, reduced adult density can increase adult survival and/or
fertility if these parameters are affected by density dependence. In
other words, organisms are expected to have plasticity in population
parameters. This may in turn help equalization of the fitness between
two populations, thereby promoting their coexistence.

The model also assumes that there are only two stages in a popu-
lation. However, competition or other density dependence may affect
only a portion of individuals in one of the stages (e.g. younger or
older individuals within a stage). Then, further division of stages may
be more appropriate. If so, competition for resources may potentially
lead to more complex life history strategies.

Our results emphasize the importance of demographic biodiver-
sity, and have critical implications in conservation biology. Many
theoretical ecologists have sought to examine systems containing
more than two interacting populations19, 20, 21, 22, 23. Our results suggest
the importance of including organisms with various life history strat-
egies in the system with competition affecting different life history
parameters. We propose that, in addition to resource partitioning
(e.g. ref 23), demographic biodiversity plays an important role in
determining the successful coexistence of multiple populations.

Methods
Existence of non-trivial equilibrium point. When the Beverton-Holt density
dependence reflecting dependence on one stage, juveniles (n1 and n3) or adults
(n2 and n4), is applied to one life history parameter (s, m, p, or f) and the beta vectors

for the influence of each population (i.e.
b11
b21

� �
and

b12
b22

� �
, also see equation (3)) are

linearly independent, a non-trivial equilibrium will exist. To demonstrate this, we use
previously proven conditions of the model to construct a non-trivial equilibrium
vector n* in the case where juvenile survival of population 1 (s1) and adult survival of
population 2 (p2) exhibits the Beverton-Holt density dependence. The other cases
follow similarly.

Since
b11
b21

� �
and

b12
b22

� �
are linearly independent, we may define n�1 and n�4 as

follows

n�1
n�4

� �
~

b11 b12

b21 b22

� �{1

a1

s(c)
1

{1

a2

p(c)
2

{1

2
664

3
775 ð17Þ

where

s(c)
1 ~

1{p1

f1m1z 1{m1ð Þ 1{p1ð Þ ð18Þ

Table 1 | The equilibrium population parameters (see Fig. 2).
Equations were obtained by solving equation 5 for corresponding
population rate.

Parameters Equilibrium rate (lD51)

Conditions for reducing
population parameter at

equilibrium (x(c))

Juvenile
Survival s(c)~

1{p
fmz 1{mð Þ 1{pð Þ

(1) High adult survival rate or
(2) Either high fertility or

maturation rate
Fertility

f (c)~
1

ms
1zms{sð Þ 1{pð Þ (1) High adult survival rate or

(2) High juvenile survival rate
Maturation

Rate m(c)~
1zsp{s{p
s f zp{1ð Þ

(1) High juvenile survival or
(2) Either high fertility or adult

survival rate
Adult Survival

p(c)~
1{s 1zfm{mð Þ

1zs m{1ð Þ
(1) High fertility rate or (2)
High juvenile survival rate
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and

p(c)
2 ~

1{s2 1zf2m2{m2ð Þ
1zs2 m2{1ð Þ : ð19Þ

Note equations (18) and (19) are identical to equations (10) and (11) from the text.
We define

M:
A1 0

0 A2

� �
, ð20Þ

where Ai~
si 1{mið Þ fi

simi pi

� �
are population matrices of the form found in

equation (1) with parameters si:s(c)
i , mi, pi, and fi for i51 and si, mi, pi:p(c)

i , and fi

for i52.
Set

n�2~
s(c)

1 m1

1{p1
n�1 : ð21Þ

Then, w1:
n�1
n�2

� �
satisfies the eigenequation w15A1w1.

Similarly, set

n�4~
s2m2

1{p(c)
2

n�3 : ð22Þ

Then, w25A2w2 where w2:
n�3
n�4

� �
.

Revisiting M, we see that by rearranging (17), s(c)
i ~si n�ð Þ and M5M(n*).

Combining the definition of n*with (20)–(22), we have n*5M(n*)n*, which gives us
a non-trivial equilibrium n*.

Stability of the coexistence equilibrium point. The existence and stability of equi-
libria under the stage-structured competition model (equation 7) depends on the
relative locations of the intercepts that the two isoclines form with the two axes
(Fig. 3). The intercepts of the population 1 and 2 isoclines with the vertical axes, y1 and
y2, respectively, are

y1~
1

b11

a1

s(c)
1

{1

 !
, ð23Þ

and

y2~
1

b12

a2

p(c)
2

{1

 !
: ð24Þ

Similarly, the intercepts of the population 1 and 2 isoclines with the horizontal axes,
z1 and z2, respectively, are

z1~
1

b21

a1

s(c)
1

{1

 !
, ð25Þ

and

z2~
1

b22

a2

p(c)
2

{1

 !
: ð26Þ

In order for the coexistence equilibrium to exist, the two isoclines must intersect
with each other. The conditions necessary for the coexistence equilibrium are

y1vy2 and z1wz2, ð27Þ

or

y1wy2 and z1vz2: ð28Þ
Condition (27) corresponds to Figure 3a and Inequalities 14 and 15, and the

coexistence equilibrium is stable. In contrast, condition (28) corresponds to
Figure 3d, and the coexistence equilibrium is unstable. Under condition (28), both
exclusion equilibria are stable, and the system will be attracted to one or the other
depending on the initial condition, creating alternative stable states. Figure 3b
corresponds to the condition

y1wy2 and z1wz2, ð29Þ

where population 1 always excludes population 2 (exclusion). Similarly, Figure 3c
corresponds to the condition

y1vy2 and z1vz2, ð30Þ

where population 2 always excludes population 1 (exclusion). Table 2 lists the con-
ditions for all possible geometries of the two isoclines when both of them exist, and
their associated asymptotic dynamics.

The slope of population growth rate with respect to maturation rate. Here, we
show that the derivative of the dominant eigenvalue lD with respect to m is positive.
First, by taking the derivative of lD (equation 4) with respect to m, we get

dlD

dm
~

1
2

{sz
mszp{sð Þsz2fsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mszp{sð Þ2z4fms2

q
2
64

3
75: ð31Þ

By rearranging equation (4), we obtainffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mszp{sð Þ2z4fms

2

q
~2lD{s{pzms: ð32Þ

Then, by substituting equation (32) into equation (31) and rearranging the equa-
tion, we generate

dlD

dm
~

s pzf {lDð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mszp{sð Þ2z4fms2

q : ð33Þ

The left hand side is positive when lD , p 1 f. This implies that the per-capita
contribution of adults is greater than the asymptotic population growth rate. The
contributing stage includes both juvenile and adult stages. When lD51, the above
inequality is satisfied because adults must at least replace themselves in number as
some of the replacements are juveniles that do not reproduce until they survive
to reach the adult stage. Therefore, lD is an increasing function of mi around the
isoclines.
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