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Introduction

m Parrilo created an algorithm to optimize SOS polynomials
in polynomial time via semidefinite programming.
Polynomial optimization has applications in many areas
such as electrical engineering.
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m A polynomial f € R[xq,...,xs] is a sum of squares
polynomial (SOS) if f = Zf-‘ ,p? for some polynomials p;.

Introduction

m Parrilo created an algorithm to optimize SOS polynomials
in polynomial time via semidefinite programming.
Polynomial optimization has applications in many areas
such as electrical engineering.

m All SOS polynomials are nonnegative. How many
nonnegative polynomials are SOS?
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sums of squares. For all other cases, there exist
nonnegative polynomials which are not SOS.
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m Hilbert showed that all nonnegative univariate
Introduction polynomials, quadratic forms, and ternary quartics are
sums of squares. For all other cases, there exist
nonnegative polynomials which are not SOS.

m For nonnegative polynomials of fixed degree, previous
results by Blekherman show that the fraction of
nonnegative polynomials that are SOS approaches zero as
the number of variables increases.
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m Hilbert showed that all nonnegative univariate
Introduction polynomials, quadratic forms, and ternary quartics are
sums of squares. For all other cases, there exist
nonnegative polynomials which are not SOS.

m For nonnegative polynomials of fixed degree, previous
results by Blekherman show that the fraction of
nonnegative polynomials that are SOS approaches zero as
the number of variables increases.

m What about polynomials in few variables of low degree?

Caitlin A. Lownes Sums of Squares



Cone of Polynomials

Sums of
Squares

Caitlin A. m Focus on bivariate polynomials f(x, y), degy(f) and
Lownes degx(f) at most 4:

f(x,y) = c1 + cox + c3x? + cax3 + csx* + cgy + crxy +
C3X2y + ch3y + c10x4y + C11y2 + C12X)/2 + C13X2y2 +
caxy? + cisx*y? + ciey® + cizxy® + cisx®y® + croxy® +
c0xty? + o1y + coxy?* + c3xy* + cax3yt + cosxty?
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Introduction

m The set of nonnegative polynomials of this type form a 25
dimensional cone, and the set of sums of squares of
polynomials form a cone inside.

Caitlin A. Lownes Sums of Squares



Sums of
Squares

Caitlin A.
Lownes

Introduction

Cone of Polynomials

m Focus on bivariate polynomials f(x,y), deg,(f) and
deg, (f) at most 4:
f(x,y) = c1 + cox + c3x? + cax3 + csx* + cgy + crxy +
cax?y + coxy + croxty + ci1y? + croxy? + cizx®y? +
crax3y? + csx*y? + ciey® + crrxy® + cisx?y® + crox3y? +
cox*y® + c1y® + cooxy® + c3x?y* + cauaxdyt + cosxty?
m The set of nonnegative polynomials of this type form a 25
dimensional cone, and the set of sums of squares of
polynomials form a cone inside.

m Intersect the cones with the hyperplane of polynomials

fslxslfd/,t — ].
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Main Idea
m 24 dimensional convex body of sum of squares polynomials

inside convex body of nonnegative polynomials.
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Main Idea
m 24 dimensional convex body of sum of squares polynomials

inside convex body of nonnegative polynomials.

m Find ratio of the volumes to find the fraction.
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Hit and Run

Figure: Hit and Run algorithm
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m Begin with a polynomial f in the convex body.

Choosing a
direction
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m Begin with a polynomial f in the convex body.

m Choose a direction v uniformly from the space of
polynomials

Choosing a

direction f51><51g d,u =0.
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m Begin with a polynomial f in the convex body.

m Choose a direction v uniformly from the space of
polynomials

Choosing a

direction f51><51g d,u =0.
m Then,

f51><51(f +t-v)dp=1
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m Begin with a polynomial f in the convex body.

m Choose a direction v uniformly from the space of
polynomials

Choosing a

direction f51><51g d,u =0.
m Then,
f51><51(f +t- V) d,U, =1.

m How do we find the values of t at the endpoints?
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m Given a polynomial h(xi,...,x,) with support A, the

A-discriminant Aa(h) is an irreducible polynomial in the
coefficients of h which vanishes when h has a degenerate
root (i.e. 28 =0 for all ).

COx

Finding the
endpoints

Caitlin A. Lownes Sums of Squares



A-discriminant

Sums of
Squares

Caitlin A.
Lownes

m Given a polynomial h(xi,...,x,) with support A, the
A-discriminant Aa(h) is an irreducible polynomial in the
coefficients of h which vanishes when h has a degenerate
root (i.e. g—)’(’i =0 for all 7).

m Simple example:
Finding the

Lt f(x) = ax?® + bx + ¢, Aa(f) = b* — 4ac
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m Given a polynomial h(xi,...,x,) with support A, the
A-discriminant Aa(h) is an irreducible polynomial in the
coefficients of h which vanishes when h has a degenerate

. ah _ -
root (i.e. 5, =0 forall 7).

m Simple example:
Finding the

Lt f(x) = ax?® + bx + ¢, Aa(f) = b* — 4ac

m A nonnegative polynomial h is on the boundary of our cone
when A(h) = 0. However, Ay is not easy to compute!
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Finding the values of t

., hy is an irreducible

Sums of
Squares

it A m The resultant of polynomials hq, ..

Lonpss polynomial in the coefficients of hy, ..., hy which vanishes

when hy, ..., hy have a common root.

Finding the
endpoints
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it A m The resultant of polynomials hy, ..., hy is an irreducible
Lownes polynomial in the coefficients of hy, ..., hy which vanishes
when hy, ..., hy have a common root.

m The principal A-determinant E, is the following resultant:
dOh . Bh
Ea(h) = Resiaan(h,x32.y5))
When h is bivariate, we know how to compute this
endnemte resultant.
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it A m The resultant of polynomials hy, ..., hy is an irreducible
Lownes polynomial in the coefficients of hy, ..., hy which vanishes
when hy, ..., hy have a common root.

m The principal A-determinant E, is the following resultant:
dOh . Bh
Ea(h) = Resiaan(h,x32.y5))
When h is bivariate, we know how to compute this
endnemte resultant.

m E, is a multiple of the A-discriminant:

Ea(h) = (Ba(h)(A_O_AAAAAA)
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Finding the
endpoints

Finding the values of t

m The resultant of polynomials hy, ..., h is an irreducible
polynomial in the coefficients of hy, ..., hy which vanishes
when hy, ..., hy have a common root.

m The principal A-determinant E, is the following resultant:
Ea(h) = Resa a a)(h, XafayaC)

When h is bivariate, we know how to compute this
resultant.

m E, is a multiple of the A-discriminant:
Ea(h) = (Aa(h))(A_A_AAAAAA)

m To find the values of t at the endpoints, find the roots of
AA(f + t-v) closest to 0!

Caitlin A. Lownes Sums of Squares



	Introduction
	Main Idea
	Hit and Run
	Choosing a direction
	Finding the endpoints

