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L Background

Often in application we are interested in finding zero sets of
polynomial equations or systems of polynomial equations.

Example

A familiar problem: if we have a stationary car whose acceleration
is a constant a, and we want to determine how long it will take the
car to travel a distance d, we are interested in the solutions of

1
5at2—d:0

That is, we are interested in the zero set of %at2 —d.
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Some Caveats

» But often, we're only interested in particular types of zero sets.

» And a lot of the time, we have to use numerical methods to
find solutions.

> In these cases, it helps to know how many solutions there are.
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Example

Consider the polynomial f = x> —3x — 1.

» FTOA: f has exactly 5 complex roots

> Descartes’ rule of signs: there is at most 1 real positive root.

Idea: we can tell when to stop looking if we know how many roots
there are.
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Notation

Given x = (x1,...,%n) € R" and a = (ay,

a __ a1 an
X _Xl

DR Xn
Example

We can write

as

X? 4 2x1x0 + 3x5

x4 2x%2 4 3x*
where a; = (2,0), a» = (1,1), and a3 = (0, 2).

...,an) € R", we define
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For our purposes, we'll use the following definition of a polynomial:

Definition
An n-variate m-nomial is a polynomial in n variables with m
terms, that is, a function f : R” — R of the form

m
f= E cix?
i=1

where ¢; € R, x = (x1,...,x,) € R", and a; = (aj1,...,ai,) € Z".
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For our purposes, we'll use the following definition of a polynomial:

Definition
An n-variate m-nomial is a polynomial in n variables with m
terms, that is, a function f : R" — R of the form

m
f= E cix¥
i=1

where ¢; € R, x = (x1,...,x,) € R", and a; = (aj1,...,ai,) € Z".

Example

f =5x1x3 + 7x2 + 3x{ — 8x$x2 — x5 is a 2-variate 5-nomial.
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And now for the objects of our interest:

Definition
The positive real zero set of a polynomial f : R” — R is the set
Zy(f)={x=(x1,...,%x5) € R": x; >0 and f(x) = 0}.

For polynomials in one variable, these are finite (unless the
polynomial itself is 0). For multivariate polynomials, though, this
need not be true.
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Example

g=x

5 __

23 6—{—X62

Bx*y10 + y? has zero set

0.5

M

10

N
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Example
g=x5— 23 X6 4 xBy2 23 x*y10 1 25 has zero set

151 R

051 B

The connected components are the distinct curves in this set.
Compact components are closed and bounded.
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What do we know already?

» For univariate polynomials, Descartes’ rule of signs.

» Khovanskii [2] gives a bound around 2(,";1)(2”3)”_1 for
connected components.

» Bihan & Sottile [1] give a bound around

m—n—1

2" )(m —n—1)n™="=2 for compact components.

But these are huge.
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Even when we restrict our attention to 2-variate 5-nomials, we have

» Khovanskii: 1024
» Bihan & Sottile: 9 (though actually they reduce it to 5)

And these still seem to high

)
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Can we be any more precise?

Yes.

Viro diagrams are diffeotopic to positive real zero sets in certain
conditions.

N
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In order to tell, we have to look at A-discriminant amoebae.
Example

Consider f = 25 — x2y + x?’y.2 — Xyt 4 2xC,

The A-discriminant amoeba is

u]
o)

I

i
it
N
»
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Example
Plotting the Viro diagram gives us

08+

0.6

0.4

0.2 -

_+| 0L

And the zero set is as above.
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Unfortunately, this doesn't always work.

Example
Take g = x*y? — x?y* — 3x?y — 9xy? + 22. lts viro diagram is

And here the zero set doesn’'t match.
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Back to bounds

So we look for bounds again.

Perrucci [3] found a way to bound compact components of
2-variate 4-nomials.

N
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polynomial:

hp.g)®

%\ o))
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Basic idea: restrict polynomial to curve to get univariate
polynomial:

p \
hip,g)®) % hip,q)(¥)

S
0

q

Jxy) =

Using this method, we are working to improve the bound on
2-variate 5-nomials to less than 5.
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