FEASIBILITY OF p-ADIC POLYNOMIALS
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AssTRACT. The p-adic number system is pertinent to many fields, including cryp-
tography, and many of these applications naturally rely on solving systems of
polynomials over the p-adics. The question of whether, in general, such a poly-
nomial system has a root over Q, — and whether this can be verified algorith-
mically — is therefore of practical and theoretical importance. Some general
problems in the search for p-adic polynomial roots are discussed, as are some
results on the existence and computability of p-adic roots.

Definition 1. For an integer a and a prime p, let ord,a be the highest natural
number k such that p* divides a. (For example, ords400 = 2.) For a rational
number a/b, define |a/b|, = p”" dpb-ordpa  Note that | - | p 1s independent the rational
number’s representation. If we define d,, : Q* - Qby dp(x,y) = |x = ylp, d defines
a metric on Q. We define Q, to be the Cauchy sequence completion of Q with
respect to d,,.

We call Q, the p-adic numbers. The usual operations + and - on Q can be ex-
tended to Q, in a natural way using Cauchy sequences; thus, the p-adic numbers
form a field, with the rational numbers as a subfield. The definition of these oper-
ations leads naturally to the definition of polynomials over Q,, and the question of
their solubility.

The first non-trivial way to simplify this question is to reduce a system of poly-
nomials to a single polynomial equation with the same zero set. It is easy to see
how this can be done over R or Q: given a system of polynomials {f;}!" ,, the as-
sociated polynomial g = X7, fl.2 has a root at a point xy exactly when all the f;
have a root there as well. Sufficiency is true over any polynomial ring, but neces-
sity follows from the ordering on the reals and rationals — each term in the sum
defining g is a square and therefore nonnegative; and a nonnegative sum equals
zero only when all the terms are zero. One of the key differences between Q,, and
R or Q is the lack of any such ordering. (For example, as we will see later, Qs
contains square root of —1, which precludes the possibility of it being an ordered
field.) Thus, that particular trick cannot be transferred to the p-adics — however,
other techniques do exist that, while increasing the degree of the equations, reduce
polynomial systems over Q, to a single equation.

Another key difference between R and Q,, is the topology. Over R, the topology
of algebraic varieties can be described in terms of the number of connected com-
ponents: for example, the zero set of the polynomial x> + y? — 1 is the unit circle,
which consists of one connected component, while the zero set of the polynomial
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x% —y% — 1 is a hyperbola with two branches and therefore has two connected com-
ponents. Over the p-adics, however, the only nonempty connected sets are those
consisting of a single point. Thus, the number of connected components of an
algebraic variety over Q, is just its cardinality, which contains less information.

How, then, can we characterize the complexity of a polynomial equation over
Qp? Other than the degree, there are two ways: we can consider the number of
terms in the polynomial, and we can consider the number of variables those terms
are in. If a polynomial is in n variables and has m terms, we say it is an n-variate
m-nomial, and we denote the set of such polynomials by 7, ,,. Some n-variate m-
nomials, however, are effectively even simpler. For example, take the case f(x,y) =
4+ 2x'9% + x15y0; then f € 7> 3. However, If we take z = x°y?, then f becomes
4 + 272 + 23; to find the roots of f, we need only find the roots zy of the above
trinomial in z; the roots of f are then given by elements of the variety xy = zo.
Thus, we have reduced f from a polynomial in two variables to one in one variable.
In general, we can make such a reduction if the convex hull of the support of f (that
is, the set of exponent vectors in R") defines an n-dimensional figure; in the case of
f above, the support lied on a line segment, which is one-dimensional in the two-
dimensional space of exponent vectors, and therefore was dishonest. We denote
the set of honest n-variate m-nomials by ¥,

We now move to the question of how to determine the roots of an honest poly-
nomial equation over Q,. We begin with a theorem.

Theorem 1 (Hensel’s Lemma). Let f € ¥ ,, and suppose we have x € Q, such
that:

e f(x) =0 mod p and

o f'(x) # 0 mod p.
Then there exists xo € Q, such that:

e f(x9) =0, and

e xo = xmod p

For example, over Qs, consider the polynomial g(x) = 2+ 1. g2) =5 =
0 mod 5, and g’(2) = 4 £ 0 mod 5, so there exists a square root of —1 in Qs.

Hensel’s Lemma gives a simple criterion for determining if an approximate root
of a p-adic polynomial can be refined to a true root. The proof relies on a p-adic
analog of Newton’s method, which gives a simple algorithmic way to calculate a
root given a suitable initial guess via p-adic expansions. It can also be applied to
obtain more general results, among which is the following theorem.

Theorem 2 (Birch and McCann). Given a polynomial f in any number of variables
over Qp, there exists an integer D(f) such that if for some x we have

|f(x)|p < |D(f)|p
then we can refine x to a true root of f. Moreover, we can calculate D(f) according
to a formula.

Thus, determining whether a polynomial has a root over Q,, can be done in finite
time; we only need check for roots over Z/p*Z where p® > |D(f)[;!. However, by
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this method, doing so is almost always impossible in practice. The effective “size”
associated with calculating L(D(f)) is bounded by:

LD(f)) < ("dL(f))2"

where 7 is the number of variables and d is the degree. The size of D(f) can be
up to quadruply exponential in the number of variables, and thus for multivariate
cases this method can be extremely inefficient. In the case of polynomials in n*ﬁ RE
however, there are better methods.

Theorem 3 (Avendano, Ibrahim, Rojas, Rusek). For a fixed prime p, finding a
root to a function in F1 3 is NP. Furthermore, allowing p to vary, finding roots for
almost all polynomials in one variable with integer coefficients is NP, as it is for

U” n*,n+1'

This means that , rather than the quadruply exponential bounds in 7 on finding
aroot of a p-adic polynomial provided by Birch and McCann, the complexity is at
worst exponential for honest n-variate (n + 1)-nomials and univariate trinomials.
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