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Abstract

The use of bionic hands is becoming a reality for those who have suffered amputation.
Mathematical models are necessary to calculate the forces needed on each tendon to mimic
the motion of human fingers. We modeled the motion of the human finger and thumb as
it bends in and out using Newton’s second law of motion. A system of partial differntial
equations was developed to describe the relationship of the forces needed to move the finger
to a specified position, incorporating a feedback mechanism. Our work shows that this type
of model can be used to accurately control the motion of a human finger.

1 Introduction

In the United States alone, approximately 1.7 million have suffered a limb loss between
1988 and 1996. In fact, about one out of every 200 people in the United States has had an
amputation [1]. Amputation rates may be on the increase dut to the epidemic of diabetes
in the United States. Many of those amputees look for ways to regain the use or their limbs
via prostheses.

Bionic limbs are mechanically engineered prostheses which are used to give the person
mobility and movement in the limb that was missing. Finding ways to duplicate the motion
of the human body is crucial to the development of bionic prostheses. In 1999, Baek et.
al. developed a simple model for a robotic finger [2]. In 2008, Arslan et. al. focused on
a biomechanical model of the index finger of the human hand which was based on human
anatomy. Because activation of a finger is done through tendons, they used a tendon
configuration to imitate the characteristics and functionality of the human hand [4].

Mimicking the exact functions of the hand is extremely complex because of the free
range of motion of the fingers and thumb. We modeled a simplified motion of the finger
using Newton’s second law of motion.

2 Method

A phalanx is the section of the finger between each joint so each finger, other than the
thumb, has three phalanges. Phalanx 1 is the secton closest to the palm. Figure 1 shows
the forces, mass, and angles involved in the movement of the phalanges of a finger. The
radius of the joint at the base of the ith phalanx is represented by r;. The angle between
the horizontal and the center of the phalanx is 6;, L; is the length of the phalanx, m; the
center of mass of the ith phalanx, and T'(6;) the tension force at the center of mass of the
ith phalanx. We used an idealized mechanical model in which each phalange is assumed
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Figure 1: Diagram of Finger

The force and acceleration equations are shown below. Force on mq:
Fy = sin(a1)(Th1 — Tha) — sin(b2 — 01)(cos(ae) (To1 + Ta2) 4 cos(as) cos(f3 — 62) (151 + T32))
Force on mo:
Fy = sin(ag)(Toy — The) — sin(f3 — 02)(cos(as)(T51 + T52)

Force on mg:
Fg = Sin(ag)(T31 — ng)

Acceleration of mq: .

Acceleration of ms:
tia = 72(02)(2L1 cos(2 — 01)51 + 2L sin(fy — 01)(91)2 + Lgég)
Acceleration of mg:
ii3-74(03) = 2L1 (cos(f3—01 )01 +sin(03—01)(0)%)+2Lo(cos(03—02) By +sin(63—62) (02)?)+ Lsbs
Multiplying the acceleration by mass and then equating with force gives the system of
equations below.
my L6, = sin(ay)(Ty1—T12)—sin(@a—01) (cos(ag ) (Tor +Tha ) +cos(as) cos(03—62) (T3, +T3?B



214 COS(02 - Ql)él + 214 sin(92 — 91)(91)2 + Lgég = (2)
Sin(ag)(Tgl — T22) — (COS(O&g)(Tgl + ng) sin(03 — 02)) (3)

(4)

mg(iig - 73(03)) = (F3 - 73(03)) (5)

Numerical solutions of these partial differential equations were obtained in Mathematica
using numerical method of lines [3]. Given each length L; and each function 6;(¢), one can
appeal to Figure 1 to graph the trajectory of the idealized mechanical finger.

3 Results

Figure 2 shows an example of the motion of the finger according to this model. The tendon
forces for this example are

Tii(t) = (t/(1+1))(0.0044)
Tio(t) 0
Tor(t) = (t/(1+1))(0.00989)
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Figure 2: Finger motion. Left: one curve per phalange, with time ¢ on the horizontal axis
and angle 6 on the vertical axis. Right: one curve per time unit ¢t = 1...23, with « position
on the horizontal axis and y position on the vertical axis.

To get a different outcome, we had to repeatedly adjust the forces. It was observed in
simulations that the predicted trajectories were rather sensitive to the relationships among
the applied forces which at times caused a severe hyperextension of one or more joints. This
can occur from allowing the force of the first phalanx to exceed the second or the second



to exceed the third. In the case of figure 3, the force on the second phalanx was lower than
the force on the first phalanx.
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Figure 3: Hyperextended joint.

In Mathematica, we were able to graph the actual form of the the finger and capture its
motion as it curves in time. Figure 2 shows the finger as ¢t = [1 — 23], but is unrealistic for
most because the third phalanx has an excessive bend. This bend can not physically occur
without more bending in the first and second phalanx.

In order to get a more realistic bend, more realistic parameters had to be used. The
initial parameters for the length of each phalanx was 1 in. for Ly, 0.9 in. for Ls, and 0.5
in. for L3. We changed these to 1.25 in, 0.75 in. and 1 in. allowing better curves. The
measurements were taken from the inside of the finger at the creases, which causes the
length of the third phalanx to be slightly greater than the second.

Figure 4 shows the thumb with the paramters m; = 1 and my = .9, L; = 1.5 and
Ly = 1.375, and «; = 11/4.0 and oy = 11/4.0. The angles 0; was subtracted from 7 /2 to get
the correct placement corresponding to an actual hand. One challenge that was addressed
was how to use this mechanical model to mimic the feedback mechanism provided by human
vision to dynamically adjust the forces in a hand to cause the finger and thumb to touch.
This feedback loop was simulated by initially selecting a distribution of forces which were
applied until the ends of the finger and thumb ceased to move closer to one another. At
that time the forces were adjusted until the finger and thumb began to move closer again.
If they began to diverge at some later time, the simulation was stopped, forces readjusted,
and the simulation restarted. This process was continued until the thumb and the finger
was successfully brought together as in figure 5.

4 Conclusion

What was accomphlished in this study was the essential first step of developing and simu-
lating a mathematical model of the motion of a finger and thumb mechanical system. The
next very challenging task is to devise a mathematical theory for controlling the action of
this mechanical system from visual feedback.
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Figure 4: Thumb-Finger. Left: one curve per time unit ¢ = 1...23,with x position on the
horizontal axis and y position on the vertical axis. Right: curve on —z horizontal axis for
the thumb and curve on x horizontal axis for the finger, both at ¢ = 23 with x position on
the horizontal axis and y position on the vertical axis.
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Figure 5: Finger and thumb touching.



