## Chagas Disease: the Silent Killer

Sara Krueger, Bethany Lutheran College

Mentored by: Dr. May Boggess and Dr. Jay Walton, Texas A&M Math Department

# History of Chagas disease

- Discovery by Carlos Chagas in 1909, Brazil
- Considered a neglected tropical disease
  - WHO and CDC
- Chagas disease is



- caused by the parasite Trypanasoma cruzi
- transmitted to humans and animals (reservoir) by insect vectors, mainly *Triatoma sp.* insects.

# Triatoma sp. Insect



- Carrier of *Trypanasoma cruzi* parasite.
- Blood sucking insect
- Ingests the parasite from the blood of person or animal(reservoir) already infected
- When feeding, secretes feces containing the parasite near the bite site
- Lives in mud, thatch or adobe houses
- Feeds on faces ("kissing bugs")

## Location of disease



#### Location of disease



# **Stages and Symptoms**

| Stage   | Symptoms                                                                                                   |  |  |
|---------|------------------------------------------------------------------------------------------------------------|--|--|
| Acute   | Swelling at infection site, fever, fatigue, rash, aches, nausea, Romana's sign                             |  |  |
| Latent  | Asymptomatic, test positive with blood tests                                                               |  |  |
| Chronic | Irregular heartbeat, congestive heart failure,<br>cardiac arrest, enlarged esophagus, colon, and<br>heart. |  |  |
|         |                                                                                                            |  |  |

## Reservoir

#### •Animals that the T. cruzi parasite might affect

- Are bitten by the kissing bugs and then can either
  - carry the parasite
  - become infected by it
  - transfer it to other kissing bugs
- opossums, armadillos, raccoons, monkeys, rats, coyotes, dogs, cats, birds, reptiles, livestock, and many others.









## **Prevention and Treatment**

- Antibiotics available for those who are in the acute stage only, other treatments are not available
- Prevention:
  - Nets and insecticides are the most efficient
  - Avoid living in mud, thatch, and adobe houses





## The Problem

- "Neglected" status repercussions
- Lack of information
- Combining Treatments, prevention strategies, general form of the spread of the disease, etc.
- Death rates
- Devillers Model (2008)



#### Map of Disease



## **Populations**

- Susceptible Insects (Sb)
- Susceptible People (Sp)
- Infected People in the Acute stage (Ipa)
- Infected People in the Latent stage (Ipl)
- Infected People in the Chronic stage (Ipc)
- Infected Insects (Ib)

\* These values vary but typically set at 30% for Ib and 40-44% distributed for Ipa, IpI, and Ipc

#### Parameters

|            | Table 1: Parameters                                |             |                               |
|------------|----------------------------------------------------|-------------|-------------------------------|
| Parameter  | Description                                        | Value       | Source                        |
| $\alpha_a$ | Transmission rate from insect to human             | ?           | This study                    |
| $\alpha_l$ | Rate from acute to latent stage                    | 0.125       | Prata (2001)                  |
| $\alpha_c$ | Rate from latent to chronic stage                  | 0.0001      | Prata (2001)                  |
| $eta_a$    | Transmission rate human to insect in acute stage   | $\beta_c/4$ | This study                    |
| $\beta_l$  | Transmission rate human to insect in latent stage  | $\beta_c/2$ | This study                    |
| $eta_{c}$  | Transmission rate human to insect in chronic stage | ?           | This study                    |
| $\gamma_a$ | Human mortality from the acute stage               | 0.00003     | Sanchez-Guillen et al. (2006) |
| $\gamma_l$ | Human mortality from the latent stage              | 0.00001     | Devillers $(2008)$            |
| $\gamma_c$ | Human mortality from the chronic stage             | 0.0005      | Prata (2001)                  |
| $\delta_p$ | Human death rate from other causes                 | 0.0003      | Devillers $(2008)$            |
| $\delta_b$ | Insect death rate                                  | 0.05        | Canals et al. $(1991)$        |
| $\mu_p$    | Human birth rate                                   | 0.000323    | This study                    |
| $\mu_b$    | Insect birth rate                                  | 0.05        | This study                    |
| heta       | Transmission rate from reservoir to insect         | ?           | This study                    |

### ODE Model

$$\begin{aligned} \frac{dS_p}{dt} &= -\alpha_a S_p I_b + \mu_p S_p - \delta_p S_p, \\ \frac{dI_{pa}}{dt} &= \alpha_a S_p I_b - \alpha_l I_{pa} - \delta_p I_{pa} + \mu_p (I_{pa} + I_{pl} + I_{pc}) - \gamma_a I_{pa}, \\ \frac{dI_{pl}}{dt} &= \alpha_l I_{pa} - \alpha_c I_{pl} - \delta_p I_{pl} - \gamma_l I_{pl}, \\ \frac{dI_{pc}}{dt} &= \alpha_c I_{pl} - \delta_p I_{pc} - \gamma_c I_{pc}, \\ \frac{dS_b}{dt} &= -\beta_a S_b I_{pa} - \beta_l S_b I_{pl} - \beta_c S_b I_{pc} + \mu_b (S_b + I_b) - \delta_b S_b - \theta S_b, \\ \frac{dI_b}{dt} &= \beta_a S_b I_{pa} + \beta_l S_b I_{pl} + \beta_c S_b I_{pc} - \delta_b I_b + \theta S_b. \end{aligned}$$

## **Approximate Numerical Solutions**

• Euler's Method



#### **Devillers' Parameters**



## Stochastic Model

| Table 2: Stochastic Model Equations                                               |                                      |  |
|-----------------------------------------------------------------------------------|--------------------------------------|--|
| Equation                                                                          | Description                          |  |
| $a1=\mu_p S_p$                                                                    | Birth for $S_p$                      |  |
| $a2 = \delta_p S_p$                                                               | Death for $S_p$                      |  |
| $a3 = \alpha_a S_p I_b$                                                           | Transition from $S_p$ to $I_{pa}$    |  |
| $a4 = \mu_p (I_{pa} + I_{pl} + I_{pc})$                                           | Birth for $I_p$                      |  |
| $a5 = \delta_p I_{pa} + \gamma_a I_{pa}$                                          | Death for $I_{pa}$                   |  |
| $a6 = \alpha_l I_{pa}$                                                            | Transition from $I_{pa}$ to $I_{pl}$ |  |
| $a7 = \delta_p I_{pl} + \gamma_l I_{pl}$                                          | Death for $I_{pl}$                   |  |
| $a8 = \alpha_c I_{pl}$                                                            | Transition from $I_{pl}$ to $I_{pc}$ |  |
| $a9 = \delta_p I_{pc} + \gamma_c I_{pc}$                                          | Death for $I_{pc}$                   |  |
| $a10 = \mu_b (S_b + I_b)$                                                         | Birth for $S_b$                      |  |
| $a11 = \delta_b S_b$                                                              | Death for $S_b$                      |  |
| $a12 = \beta_a S_b I_{pa} + \beta_l S_b I_{pl} + \beta_c S_b I_{pc} + \theta S_b$ | Transition from $S_b$ to $I_b$       |  |
| $a13 = \delta_b I_b$                                                              | Death for $I_b$                      |  |

## **Approximate Solution**

#### •Gillespie Algorithm, 1977

Probabilities
b1=a1/a0
b2=(a1+a2)/a0
b3=(a1+a2+a3)/a0....
a0 is the sum of all a's



## **Results of Continuous Time Model**



## **Results of ODE Model**



### Sensitivity Analysis for ODE Model



### Sensitivity Analysis for ODE Model



### Sensitivity Analysis for ODE Model



#### **Further Research**

With this model we can include the effects of

- Making medicines available
- Available nets
- Spraying techniques





#### Sources

- Brenière, Simone Frédérique, Marie France Bosseno, François Noireau, Nina Yacsik, Pascale Liegeard, Christine Aznar, and Mireille Hontebeyrie. "Integrate Study of a Bolivian Population Infected by Trypanosoma Cruzi, the Agent of Chagas Disease." Memórias Do Instituto Oswaldo Cruz 97.3 (2002). Print.
- Canals et al., 1991 M. Canals, P.E. Cattan, R. Solis and J. Valderas, Fecundity and mortality in populations of Triatoma infestans, Rev. Med. Chile 119 (1991), pp. 979–983.
- "Chagas Disease." MayoClinic.com. Mayo Foundation for Medical Education and Research. Web. 13 June 2011. <a href="http://www.mayoclinic.com/health/chagas-disease/DS00956">http://www.mayoclinic.com/health/chagas-disease/DS00956</a>>.
- Devillers, H., J. Lobry, and F. Menu. "An Agent-based Model for Predicting the Prevalence of Trypanosoma Cruzi I and II in Their Host and Vector Populations." Journal of Theoretical Biology 255.3 (2008): 307-15. Print.
- Prata, A. "Clinical and Epidemiological Aspects of Chagas Disease." The Lancet Infectious Diseases 1.2 (2001): 92-100. Print.
- Sánchez-Guillén et al., 2006 M.D.C. Sánchez-Guillén, A. López-Colombo, G. Ordóñez-Toquero, I. Gomez-Albino, J. Ramos-Jimenez, E. Torres-Rasgado, H. Salgado-Rosas, M. Romero-Díaz, P. Pulido-Pérez and R. Pérez-Fuentes, Clinical forms of Trypanosoma cruzi infected individuals in the chronic phase of Chagas disease in Puebla, Mexico, Mem. Inst. Oswaldo Cruz 101 (2006), pp. 733–739.