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Background

Definition
A frame is a family of vectors F = {f1, . . . , fk} in a Hilbert space H such
that there exists 0 < A ≤ B <∞ such that

A||x ||2 ≤
k∑

i=1

|〈x , fi 〉|2 ≤ B||x ||2.

If A = B = 1, we say it is a Parseval frame.

Reconstruction Formula: For a frame F , there exists a set of vectors
{gi}ki=1 s.t. for all x in H,

x =
k∑

i=1

〈x , gi 〉fi =
k∑

i=1

〈x , fi 〉gi .

We say {fi} and {gi} are dual frames for H.
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Vector spaces over Z2

Dot product ceases to be a definite inner product in Zn
2

Example:


1
0
0
1

 ·


1
0
0
1

 = 1 + 1 = 2 ≡ 0 (mod 2).

Motivation: Establish a theory for frames without relying on definite inner
products

Previous Work:

“Frame theory for binary vector spaces"- Bodmann et. al. (2009)

“Binary Frames" - Hotovy/Scholze/Larson (2010)
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Indefinite Inner Product Spaces

Definition
(V , 〈·, ·〉) is an (indefinite) inner product space if 〈·, ·〉 : V × V → F is a
bilinear form (or sesquilinear if F = C).

Example:

The dot product is a bilinear map 〈·, ·〉 : Zn
2 × Zn

2 → Z2 given via

〈 a1
...
an

 ,

 b1
...
bn

〉
=

n∑
i=1

aibi .

Definition (Bodmann, et al. (2009))

A frame in a vector space V over a field F is a spanning set of vectors for V.



Riesz Representation Theorem

Theorem (Hotovy/Scholze/Larson 2011)

Let V ,K be vector spaces over Z2 with a dual frame pair {xi}k1 , {yi}k1 .
Then if φ : V → K is a linear functional, then there exists a unique z ∈ V
such that φ(x) = 〈x , z〉 for all x ∈ V .

Corollary (Existence of Adjoint)

There exists φ∗ : K → V such that 〈φ(x), y〉 = 〈x , φ∗(y)〉 for all x ∈ V ,
y ∈ K. If φ = φ∗, we say φ is a self-adjoint operator.

Note, not all subspaces of Zn
2 have dual frames:

Let V = span




1
1
1
1

 ,


1
1
0
0


 . Note that the dot product of any two

vectors in V is zero, so there is no Riesz Representation theorem.
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Analysis Operator

Definition (Hilbert space)

The analysis operator for a frame {fi}ki=1 in a Hilbert space H is the map
Θ : H → Ck defined by Θ(x) = (〈x , f1〉, . . . , 〈x , fk〉)T .

In a general vector space setting, what is the connection between the
analysis operator and frames?

Definition
Let V be a finite-dimensional vector space over F. We say the linear
functionals {φ1, . . . , φk} separate V if Θ(x) = (φ1(x), . . . , φk(x))T is
injective.
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A Reconstruction Formula

Theorem
Let V be a n-dimensional space over a field F. Let {φ1, . . . , φk} separate V,
i.e. Θ is injective. Then there exists a set of vectors {X1, . . . ,Xk} ⊂ V
such that for all x ∈ V we have that

x =
k∑

i=1

φi (x)Xi .



Analysis Spaces

Definition

A frame {xi}ki=1 is an analysis frame for a vector space V if Θ : V → Fk

defined by
Θ(x) = (〈x , x1〉, 〈x , x2〉, . . . , 〈x , xk〉)T

is injective where 〈·, ·〉 : V × V → F is an indefinite inner product.

Definition
(V , 〈·, ·〉) is called an analysis space if it admits an analysis frame.

We want to classify all such analysis spaces (V , 〈·, ·〉) over a field F



Results on Analysis Spaces

Theorem

Let {xi}ki=1 be an analysis frame for a n-dimensional vector space V. Let
E = Ran(Θ) ⊆ Fk . Then there exists a dual frame {yi}ki=1 such that for all
x ∈ V ,

x =
k∑

i=1

〈x , xi 〉yi =
k∑

i=1

〈x , yi 〉xi

where
xi = Θ∗(ei ), yi = Θ−1|EPE (ei )

where {ei} is the standard orthonormal basis for Fk , Θ−1|E is the invertible
map from E back to V, and P |E is an idempotent projection (i.e. not
necessarily self-adjoint) onto E.



E = Ran(Θ) admits a Parseval frame

Suppose we have an analysis frame {xi}ki=1 for V. Suppose in addition,
there exists a {zi}ki=1 ⊂ V such that {Θ(zi )}ki=1 is a Parseval frame for
E = Ran(Θ), i.e. we have a reconstruction formula given for all u ∈ E by:

u =
k∑

i=1

〈u,Θ(zi )〉Θ(zi ).

Then we have that
xi = Θ∗(ei )

and

yi =
k∑

j=1

〈ei ,Θ(zj)〉zj

where ei , i = 1, . . . , k is the standard basis for Fk .



ZIP(V) and Analysis Spaces

We introduce the following subspace of V:

Definition
The zero inner product subspace of V is given by:

ZIP(V ) := {x ∈ V |〈x , y〉 = 0, ∀y ∈ V } .

Example: Let V = span




1
1
1
1

 ,


1
1
0
0


 . Then ZIP(V ) = V .

We formulate a useful characterization of analysis spaces:

Lemma
(V , 〈·, ·〉) is an analysis space if and only if ZIP(V ) = {0}.



Equivalent Properties of Analysis Spaces

Theorem
Let (V , 〈·, ·〉) be an analysis space. Then the following are equivalent:

1 V has a Riesz Representation theorem
2 V has a dual basis pair
3 All frames in V are analysis frames
4 V has at least one analysis frame
5 ZIP(V ) = {0}

Corollary

If (V , 〈·, ·〉) is a definite inner product space, then it is an analysis space.



Vector Space Decomposition

Theorem
Let V be a finite-dimensional vector space over F. Then V can be written
as the algebraic direct sum of an analysis space E and the space ZIP(V), i.e.

V = (E ⊕ ZIP(V ), 〈·, ·〉) = (E , 〈·, ·〉E )⊕ (ZIP(V ), 〈·, ·〉ZIP(V ))

where
〈(e1, z1), (e2, z2)〉 = 〈e1, e2〉E + 〈z1, z2〉ZIP(V )

for e1, e2 ∈ E , z1, z2 ∈ ZIP(V ).

Corollary

V /ZIP(V ) is unitarily equivalent to E , i.e. there exists an isomorphism
U : V /ZIP(V )→ E such that 〈w1,w2〉 = 〈Uw1,Uw2〉 for all
w1,w2 ∈ V /ZIP(V ).



A Finer Vector Space Decomposition

Let V = E ⊕ ZIP(V ) where E is an analysis space.

Definition
Let E be an analysis space as given above. Let

Z0 := {x ∈ E | 〈x , x〉 = 0 and 〈x , y〉+ 〈y , x〉 = 0, ∀y ∈ E}.

Theorem
Let V finite-dimensional vector space over F where F 6= C. Then

V = E ′+̇Z0+̇ZIP(V )

where Z0 and ZIP(V ) are defined as before and E ′ is an analysis space.

Note that 〈·, ·〉V restricted to the analysis space E ′ becomes a definite
inner product on E ′.
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