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Introduction

Our research experience has been centered around the following conjecture and

its corollary (here Z+(f) refers to the positive real zero set of f):

Conjecture: (Main Theorem) Given f ∈ R[x1, . . . , xn] an honest (n + 2)-

nomial, Z+(f) has topology isotopic to a quadric hypersurface of the form

x21 + · · ·+ x2j − (x2j+1 + · · ·+ x2n) = ε

where j and the sign of ε are computable in polynomial time (for fixed n) from

the support A and coefficients of f .

Corollary: Given f ∈ R[x1, . . . , xn] an honest (n + 2)-nomial, Z+(f) has

at most two connected components.

Generally speaking, our task was to understand our goal along with some

possible approaches, to research relevant information keeping in mind how it

might help us reach our goal, and to keep an eye out for opportunities to gener-

alize our expected results or simplify current results. We also had to continually

make sure that we were ready to present our work to an audience.

What We’ve Learned

Over the course of the past eight weeks, we were lectured on and read about

a wide variety of topics. First, we learned some basic tools and motivations

within the field of algebraic geometry. We began with resultants and discrim-

inants, completing assignments which required us to demonstrate a basic un-

derstanding of these tools. We later learned of the way to represent resultants

by discriminants given to us by Cayley’s trick [2], and also how to represent

the discriminant as a resultant using the definition of the discriminant as the

common root of all of the partial derivatives and the function. Discriminants

are very useful to our project. More specifically the connected components of

the complements of discriminant varieties (zero sets of discriminants), which are

called “discriminant chambers”, each give us a set of polynomials with the same

topology.
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The assignments also introduced us to ways of using linear algebra to simplify

problems in algebraic geometry. For example, we learned how to use linear

algebra to find a simple form for the discriminant of n-variate (n+2)-nomials as

done in [3]. We developed skills in polynomial manipulation, utilizing multiple

simplification techniques such as monomial, linear, and exponential variable

changes. Using these we could get our system into a nice canonical form which

was much easier to work with.

We also studied Viro Diagrams, which are a combinatorial approach to deter-

mining the topology of varieties. Related to Viro diagrams is Frederic Bihan’s

work on hypersurfaces, which illustrates the special case of working with n-

variate, (n+ 2)-nomials. When polynomials are supported on a circuit, we have

more options available to us, including results such as his Theorem 10.

Topology provided an additional selection of tools. First establishing an un-

derstanding of basic topological structures and vocabulary, we then began to

search within differential and algebraic topology for useful ideas. We use Morse

theory, a subset of differential topology, to prove our corollary, while algebraic

topology provides homological properties that will be useful in our algorithm.

We are concerned with isotopic and diffeotopic topological equivalence in the

main theorem, for which we developed a grasp of homeomorphism, diffeomor-

phism, Betti numbers, connectedness, and manifolds, among other topological

concepts and invariants.

Finally, we studied complexity theory. It was necessary to review the basic

complexity classes, but it was also important that we research some of the

lesser known complexity classes. Since we’re working with real numbers, it was

advantageous to gain an understanding of the BSS model of computation. Under

the BSS model the basic operations on real numbers are treated as some which

happen in constant time. This will serve to simplify the classification of our

problem greatly since we no longer have to take into account the bit lengths of

our numbers and how they’re affected throughout the process of our algorithm.

Process and Results

We began by establishing a familiarity with the above topics through intensive

reading and exercises. Then we attempted to prove the main theorem early

on using what we’d learned about Morse Theory, but we were unsuccessful.

We needed more of a solid understanding of our tools before we could make

any progress on that proof. So we instead shifted our attention to proving

the corollary using the same machinery. We hoped this would give us a better

understanding while at the same time giving us a concrete result to present.

This turned out to be no easy task.

Proving the Corollary

We use induction, where in our base case, we work with a univariate trinomial

f(x) = c0 ± c1x± c2x2
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which has at most two positive real roots by Descarte’s Rule, and thus two

connected components. Next we assume our inductive step: that for any (n−1)

variate (n+ 1)-nomial, Z+(f) has at most two connected components. Then we

consider an arbitrary n-variate, (n+ 2)-nomial,

f1(x1, . . . , xn) = c0x
a0 + c1x

a1 + . . .+ cn+1x
an+1

(We may assume that each aij ≥ 0 by multiplying by the appropriate monomial,

which leaves the positive zero set unaffected). We utilize the simplification

methods we have learned to change our polynomial into a simplified exponential

sum

f3(x1, . . . , xn) = 1± ex1 ± . . .± exn ± keb·x

examining ZR(f3) instead of Z+(f1). In doing so, we need to study the topo-

logical aspects we had been introduced to much more deeply. Specifically, we

work with Morse Theory to examine the level sets of ZR(f), treating ZR(f) as

a manifold M. Initially we compute the general form of our Hessian matrix in

order to examine the possible eigenvalues–and thus potential ”surgeries”–for our

particular case. However, the characteristic polynomial is particularly difficult

to compute. As such, we decided to use a different approach.

Our second approach involves examining the relationship between our in-

ductive step, critical points, and path-connectedness. Here, critical points must

satisfy the following system of equations:

H =


±ex1 = ±γα1e

αx

...

±exn−1 = ±γαn−1eαx

We have two cases: first, H has no solutions; second, H has at least one so-

lution. Examining our manifold M , our inductive step and Theorem 2.2 from

Differential Topolgy by Morris W. Hirsch [1], we proved that, in the first case

where our Morse function on M gave no critical points, we always had at most

two connected components.

In the second case, where our Morse function did yield critical points, that

the critical points must satisfy H allows us to substitute and simplify to obtain

1± exn ± γ′eαnxn

By Descarte’s Rule, there can be at most two solutions, i.e., at most 2 critical

points. Assuming there is one critial point, we show that there is at most one

connected component. We use, again, Theorem 2.2 with our inductive step,

and then the fact that locally to a critical point M is ”like” a smooth quadric

hypersurface [1] to write a concatenated path from m ∈M to the critical point,

which can be done for any m ∈ M . This means that m shares the same path

connected component as the critical point ∀m ∈M , and since there is only one

critical point, there must be only one path connected component.

We use the same approach for the case of 2 connected components, except

instead we show that there exists a path from m to one of the two critical
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points, demonstrating that m must lie in a connected component with either of

the critical points. We still must show that it cannot be the case that we have

at least three connected components and two critical points, using restrictions

on surgery types.

Finally, we must consider the case with singularity, by showing first that

if there is a singularity, then it is unique (an obvious fact given the system of

equations it must solve). If the singular point’s uniqueness holds, we can use

stratified Morse Theory and similar reasoning as in the case of the single critical

point.

This would prove both of our cases, implying that for f an honest, n-variate,

(n + 2)-nomial, Z+(f) has at most 2 connected components, thus proving our

corollary.

Future Directions

Theorem and Paper

Understanding connectedness and number of components are key parts in under-

standing the topology of Z+(f). As we develop our algorithm, we will use this

fact to understand Z+(f) and to gain intuition as to which quadric hypersurface

a given positive real zero set may yield.

Dr. Rojas provided us with a copy of a paper-in-progress, which we read

through. We will be working with Rojas as co-authors along with Dr. Bihan,

who has previously co-authored work with Dr. Rojas. [4]

Moving forward, we will finish the completely formalized write-up of our

corollary proof, which will be integrated into our paper with Dr. Rojas and

Dr. Bihan. We also hope to revisit our previous approach to proving the main

theorem with our refined understanding of the machinery involved. Of course

we will try other approaches as well, including looking at modified versions of

the discriminant chamber idea (which take into account only positive orthants),

and also looking at level sets of discriminant varieties.

Throughout the coming semester we will continue to work on the paper and

the algorithm we established in the beginning, aiming to complete formulation

and implementation sometime in December. Over this time period we will

continue to communicate with Dr. Rojas about the paper and assist with any

revisions, edits, or additions we can, with the hopes of eventually publishing

the paper. After the paper is published, we would like to try to generalize this

work and/or explore other avenues related to our problem if possible.

Furthermore, we will present our work at MAA MathFest 2013 in Connecti-

cut, as well as look to future conferences at which to present.
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