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REVIEW

Let f(x) = co + c1x™ + - -+ + ¢,x? where ¢; € R, a; € R"V/ € N,

Recall:
Z(f) ={(x1,...,xn) € RL|f(x1,...,xn) = 0}.
Similarly, Zr(f) = {(x1,...,xn) € R"|f(x1,...,xn) = 0}.
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Descartes’ Rule:

@ for positive roots, start with the sign of the coefficient of the lowest
power.

@ count the number of sign changes n as you proceed from the lowest
to the highest power

@ then n is the maximum number of positive roots.

e.g.,
f(x) =3 —9x 4 5x> + x’
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STATEMENT

Proposition:

Given f € R[xq, ..., xp] an honest (n+ 2)-nomial, Z;(f) has at most two
connected components.

FIGURE 1: 1 and 2 connected components
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SKETCH OF PROOF

We proceed by induction. Base Case: Let f be an honest, n-variate
(n + 2)-nomial.
If n =1 we have a univariate trinomial, which can have at most 2 sign

changes and thus, by Descarte’s Rule, at most 2 positive roots (i.e
connected components).

f(x) = £ c1x &+ ox?
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Inductive Step: Suppose that the positive zero set of any honest
(n — 1)-variate (n + 1)-nomial has at most two connected components.
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Inductive Step: Suppose that the positive zero set of any honest

(n — 1)-variate (n + 1)-nomial has at most two connected components.

Consider an arbitrary honest n-variate (n + 2)-nomial
fl(Xl, - ,Xn) = coxP + x4+ ...+ Cn_|_1Xa”Jrl

(We may assume that each a; > 0 by multiplying by the appropriate
monomial, which leaves the positive zero set unaffected).
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Simplification: We obtain an exponential sum f,, where
H(x1,...,xn) =14+ ePX £ 4 ebrX £ Hebrirx

via rescalings and changes of variables.
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Simplification: We obtain an exponential sum f,, where
H(x1,...,xn) =14+ ePX £ 4 ebrX £ Hebrirx

via rescalings and changes of variables. If we then use a linear change of
variables to obtain

f3(x1,...,xp) =1+ e+ .. £+ keP™

(where k € R+g), then f3 has a zero set topologically equivalent to that of
fl.

Note that rewriting f; as an exponential function implies that we will
examine Zr(f3) instead of Z, (f1).
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MORSE THEORY

INTRODUCTION

Let h be a smooth function h: M — R with no degenerate critical points.
Morse Theory provides a method of examining the topology of a
manifold M (in our case, Zr(f), Z4+(f)) using the behavior of h on M. By

looking at the level sets of a space, we can gain insight to the topology of
the whole space.
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DEFINITIONS

o A critical point of a function is a root of all of the function's partial
derivatives.

o A function h such that all of its critical points are nondegenerate is
called a Morse function.

o A critical value is h evaluated at k.
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SKETCH OF PROOF CONTINUED

Finding Critical Points: Now consider M to be the real zero set of f;.
Let h(x1,...,Xp—1) = Xp. The critical points of h on M must also satisfy
the following system of equations:

+e = yae™”
H=

+e*-1 = +va,_1e**
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SOLVING H

We have two cases:
Case one, the system H has no solutions.
Case two, the system H has at least one solution.
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WITH NO SOLUTIONS

Case one:
o If there are no solutions, then there are no critical points.
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WITH NO SOLUTIONS

Case one:

o If there are no solutions, then there are no critical points.
o Then, Morse theory gives that every level set is diffeomorphic to Mj,

where My = {(x1,...,xn) € M : x, =0}

REFSLAND (TEXAS A&M) MIiNI Symp TALK 2 07/24/2013 13 /18



WITH NO SOLUTIONS

Case one:
o If there are no solutions, then there are no critical points.
o Then, Morse theory gives that every level set is diffeomorphic to My,
where My = {(x1,...,x,) € M : x, =0}
o By our induction hypothesis, My has at most 2 connected
components.
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WITH NO SOLUTIONS

Case one:

o If there are no solutions, then there are no critical points.

o Then, Morse theory gives that every level set is diffeomorphic to My,
where My = {(x1,...,x,) € M : x, =0}

o By our induction hypothesis, My has at most 2 connected
components.

o Thus, every diffeomorphic level set of M has at most 2 connected
components, so M has at most 2 connected components.
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WITH SOLUTIONS

Case two: If there are solutions to the system of equations

+e* = £ya;e™*
H =

+e*-1 = +ya,_ 1™
We substitute into the defining function of M to obtain
1+ e £ /¥

By Descarte's Rule, there can be at most two solutions, i.e., at most 2
critical points.
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ONE AND TWO SOLUTIONS

If there are solutions, say ki, ko € M, then ki and k» are critical points.
We want to show that a path can be written between any point me M
and one of ky or k».
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CONCLUSION

By proving case one and case two, we have shown that we will have 0, 1,
or 2 critical points and, by induction and the application of Morse Theory,
M will have at most two connected components. Thus, Z; (f) has at most

2 connected components.
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CONCLUSION

FUTURE DIRECTIONS

Understanding connectedness and number of components are key parts in
understanding the topology of Z + (f). As we develop our algorithm, we
will use this fact to understand Z(f) and to gain intuition as to which
quadric hypersurface a given positive real zero set may yield.
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CONCLUSION
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