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Background

Algebraic Geometry-What

What is it?

Varieties – Zero sets of systems of polynomials

Notation/Terminology Hell...but worth it!
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Background

Algebraic Geometry-Why

Pure Mathematics

Nice Problems

Connections to other areas of mathematics

Number Theory
Combinatorics
Statistics

Applied Mathematics

Physics, Mathematical Biology, Automated Geometric Reasoning,. . .
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Background

(a) The ”interplanetary superhighway”

Image can be found at www.jpl.nasa.gov/images/superhighway square.jpg
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Foundation

Terms: at the gates

The support A of an n-variate t-nomial f , where

f (x1, . . . , xn) = c1x
a1 + · · ·+ ctx

at

is given by A = {a1, . . . , at} where each ai ∈ Rn and where
xai = xai11 . . . xainn .
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Foundation

For example, let f (x1, x2) = 42 + 42x32 + 42x31 + 42x1x2 (a bivariate
tetranomial) then A = {(0, 0), (0, 3), (3, 0), (1, 1)}
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Foundation

A polynomial is said to be honest if its support does not lie in any
(n-1)-plane.
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Foundation

Notation

Z+(f ) is the set of roots of f in the positive orthant Rn
+.

ZR(f ) is the set of real roots of f .
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Our Goal

Conjecture

Given f ∈ R[x1, . . . , xn] an honest (n + 2)-nomial, Z+(f ) has topology
isotopic to a quadric hypersurface of the form

x21 + · · ·+ x2j − (x2j+1 + · · ·+ x2n ) = ε

where j and the sign of ε are computable in polynomial time (for fixed n)
from the support A and coefficients of f .
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Our Goal

Quadric Hypersurfaces

(b) x21 + x22 + x23 = 1 (c) x21 + x22 − x23 = 1 (d) x21 + x22 − x23 = −1

Figure 1: Nondegenerate Quadric Hypersurfaces

Images courtesy of Wikipedia
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Our Goal

Quadric Hypersurfaces

(a) x21 + x22 − x23 = 0

Figure 2: Degenerate Quadric Hypersurface

Image courtesy of Wikipedia
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Our Goal

Isotopy

A homemorphism (resp. diffeomorphism) is a continuous (resp.
differentiable) bijection with a continuous (resp. differentiable)
inverse.

Given any subsets X ,Y ⊆ Rn
+,we say that they are isotopic (resp.

diffeotopic) iff there is a continuous (resp. differentiable) function
H : [0, 1]× X −→ Rn

+ such that H(t, ·) is a homeomorphism (resp.
diffeomorphism) for all t ∈ [0, 1], H(0, ·) is the identity on X , and
H(1,X ) = Y .
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Approaches

Discriminant Varieties

Given any A ∈ Zn, we define the A-discriminant variety, written ∇A, to
be the topological closure of

{[c1 : · · · : cT ] ∈ PT−1
C |c1xa1 + · · ·+ cT x

aT

has a degenerate root in (C∗)n}

The real part of ∇A determines where in coefficient space the real zero set
of a polynomial (with support A) changes topology.
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Conclusion

Consequences of the conjecture

Tells us about the topology of positive zero sets of honest n-variate
(n + 2)-nomials of arbitrary degree

Results

We currently have a bound on the number of connected components of
n-variate (n + 2)-nomials.
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Conclusion

THANK YOU FOR YOUR ATTENTION!!!

:)
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Conclusion
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