Zeros of the Eisenstein Series

Rachael Wood

Harding University

July 25,2013

Basic Definitions

- Throughout the presentation, z = x + iy.
- $\mathbb{H} = \{z \in \mathbb{C} : y > 0\}$
- $\mathbb{D} = \{z \in \mathbb{H} : |z| \ge 1 \text{ and } -\frac{1}{2} \le x \le \frac{1}{2}\}$
- $\mathbb{G} = \{z \in \mathbb{H} : -\frac{1}{2} \le x \le \frac{1}{2}\}$
- $SL_2(\mathbb{Z})$ is the group of matrices where $\gamma \in SL_2(\mathbb{Z}), \gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ where ad - bc = 1 and $a, b, c, d \in \mathbb{Z}$
- If $\gamma \in SL_2(\mathbb{Z}) : \gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, then $\gamma(z) = \frac{az+b}{cz+d}$.

Introduction to $E_{2k}(z)$

This presentation will deal primarily with the Eisenstein Series of Weight 2k. These are the functions which have the Fourier expansions:

$$E_{2k}(z) = 1 + \gamma_{2k} \sum_{n=1}^{\infty} \sigma_{2k-1}(n) e^{2\pi i n z},$$

where

$$\gamma_{2k} = (-1)^k \frac{4k}{B_k},$$

 B_k is the k-th Bernoulli number, and $\sigma_{2k-1}(n) = \sum_{a|n} a^{2k-1}$ When $k \ge 2$, $E_{2k}(z)$ is a Modular Form for $SL_2(\mathbb{Z})$.

Modular Forms

To be a modular form for $SL_2(\mathbb{Z})$, $E_{2k}(z)$ must be holomorphic on \mathbb{H} , including ∞ , and satisfy the relations

$$(cz+d)^{2k}f(z) = f(\frac{az+b}{cz+d})$$
 for all $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z}).$

• F.K.C Rankin and Swinnerton-Dyer (1970)

Quasimodular Forms

When k=1, $E_2(z)$ is known as a quasimodular form, which fufills the following relation:

$$E_2(\frac{az+b}{cz+d}) = (cz+d)^2 E_2(z) - \frac{6}{\pi}ic(cz+d).$$

The Fourier expansion of $E_2(z)$ is given by

$$E_2 = 1 - 24 \sum_{n=1}^{\infty} \sigma_1(n) e^{2\pi i n z}$$

Zeros of $E_2(z)$

- Basraoui and Sebbar (2012)
- $E_2(z) = 0$ doesn't have any solutions within \mathbb{D} .
- $E_2(z) = 0$ has infinitely many zeros in \mathbb{G}
- Not much else is known about their general distribution or location.

Graph of $E_2(z) = 0$

(-0.4999999999999921, 0.13091903039678807)

(-0.4999999999999921, 0.13091903039678807)(-0.499999999999921) is very close approximation to $-\frac{1}{2}$

 $\begin{array}{l}(-0.4999999999999921,\ 0.13091903039678807)\\(-0.499999999999921) \text{ is very close approximation to } -\frac{1}{2}\\(-0.3333258907443707,\ 0.0581819236539682)\end{array}$

(-0.4999999999999921, 0.13091903039678807) (-0.499999999999921) is very close approximation to $-\frac{1}{2}$ (-0.3333258907443707, 0.0581819236539682) (-0.3333258907442707) is very close approximation to $-\frac{1}{3}$ (-0.49999999999999921, 0.13091903039678807)(-0.4999999999999921) is very close approximation to $-\frac{1}{2}$ (-0.3333258907443707, 0.0581819236539682)(-0.3333258907442707) is very close approximation to $-\frac{1}{3}$ (-0.24999517436865332, 0.03272491502484815) (-0.4999999999999921, 0.13091903039678807) (-0.499999999999921) is very close approximation to $-\frac{1}{2}$ (-0.3333258907443707, 0.0581819236539682) (-0.3333258907442707) is very close approximation to $-\frac{1}{3}$ (-0.24999517436865332, 0.03272491502484815) (-0.24999517436865332) is a very close approximation to $-\frac{1}{4}$ $\begin{array}{l} (-0.49999999999999921, \ 0.13091903039678807) \\ (-0.49999999999999921) \text{ is very close approximation to } -\frac{1}{2} \\ (-0.3333258907443707, \ 0.0581819236539682) \\ (-0.3333258907442707) \text{ is very close approximation to } -\frac{1}{3} \\ (-0.24999517436865332, \ 0.03272491502484815) \\ (-0.24999517436865332) \text{ is a very close approximation to } -\frac{1}{4} \\ (-0.19999706592659725, \ 0.020942992285893466) \end{array}$

(-0.49999999999999921, 0.13091903039678807) (-0.49999999999999921) is very close approximation to $-\frac{1}{2}$ (-0.3333258907443707, 0.0581819236539682) (-0.3333258907442707) is very close approximation to $-\frac{1}{3}$ (-0.24999517436865332, 0.03272491502484815) (-0.24999517436865332) is a very close approximation to $-\frac{1}{4}$ (-0.19999706592659725, 0.020942992285893466) (-0.19999706592659725) is a very close approximation to $-\frac{1}{5}$ (-0.4999999999999921, 0.13091903039678807) (-0.4999999999999921) is very close approximation to $-\frac{1}{2}$ (-0.3333258907443707, 0.0581819236539682) (-0.3333258907442707) is very close approximation to $-\frac{1}{3}$ (-0.24999517436865332, 0.03272491502484815) (-0.24999517436865332) is a very close approximation to $-\frac{1}{4}$ (-0.19999706592659725, 0.020942992285893466) (-0.19999706592659725) is a very close approximation to $-\frac{1}{5}$ (-0.400001820482515, 0.020946451273604345) (-0.49999999999999621, 0.13091903039678807)(-0.49999999999999621) is very close approximation to $-\frac{1}{2}$ (-0.3333258907443707, 0.0581819236539682)(-0.3333258907442707) is very close approximation to $-\frac{1}{3}$ (-0.24999517436865332, 0.03272491502484815)(-0.24999517436865332) is a very close approximation to $-\frac{1}{4}$ (-0.19999706592659725, 0.020942992285893466)(-0.19999706592659725) is a very close approximation to $-\frac{1}{5}$ (-0.400001820482515, 0.020946451273604345)(-0.400001820480515) is a very close approximation to $-\frac{2}{5}$

(-0.49999999999999621, 0.13091903039678807)(-0.49999999999999621) is very close approximation to $-\frac{1}{2}$ (-0.3333258907443707, 0.0581819236539682)(-0.3333258907442707) is very close approximation to $-\frac{1}{3}$ (-0.24999517436865332, 0.03272491502484815)(-0.24999517436865332) is a very close approximation to $-\frac{1}{4}$ (-0.19999706592659725, 0.020942992285893466)(-0.19999706592659725) is a very close approximation to $-\frac{1}{5}$ (-0.400001820482515, 0.020946451273604345)(-0.400001820480515) is a very close approximation to $-\frac{2}{5}$ And this pattern continues

$$-\frac{1}{6}, \frac{1}{6}, -\frac{3}{7}, -\frac{2}{7}, -\frac{1}{7}, \frac{1}{7}, \frac{2}{7}, \frac{3}{7}, -\frac{3}{8}, -\frac{1}{8}, \frac{1}{8}, \frac{3}{8}, \frac{3}{8}, \frac{4}{8}, \frac{3}{8}, \frac{4}{9}, -\frac{4}{9}, -\frac{2}{9}, -\frac{1}{9}, \frac{1}{9}, \frac{2}{9}, \frac{4}{9}, -\frac{3}{10}, -\frac{1}{10}, \frac{1}{10}, \frac{3}{10}, \dots$$

$$0, -\frac{1}{2}, \frac{1}{2}, -\frac{1}{3}, \frac{1}{3}, -\frac{1}{4}, \frac{1}{4}, -\frac{2}{5}, -\frac{1}{5}, \frac{1}{5}, \frac{2}{5},$$

• Now we switch our focus from $E_2(z)$ to h(z).

$$h(z) = z + \frac{6}{\pi i E_2(z)}$$

The function h(z) is equivariant, which means that for

$$h(\gamma z) = \gamma h(z) \text{ for } \gamma \in SL_2(\mathbb{Z}).$$

Theorem 1

If
$$E_2(z_0) = 0$$
 then $h(\gamma z_0) = \frac{a}{c}$ for $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$.
Conversely, if $h(\tau_0) = \frac{a}{c}$ with coprime a, c , then $E_2(\gamma^{-1}\tau_0) = 0$ for $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$.

Consider the case when $E_2(z_0) = 0$ (so $h(z_0) = \infty$), and let $z = \gamma z_0$. Note that $\gamma \infty = \frac{a}{c}$. Then

$$h(\gamma z_0) = \gamma h(z_0) = \gamma \infty = \frac{a}{c}.$$

Conversely, suppose $h(\tau_0) = \frac{a}{c}$. Then $h(\gamma^{-1}\tau_0) = \gamma^{-1}h(\tau_0) = \gamma^{-1}\frac{a}{c} = \infty$, so $E_2(\gamma^{-1}\tau_0) = 0$.

Graphs of Im(h(z)) = 0

Since h(z) is rational only when $E_2(z) = 0$, by graphing Im(h(z)) = 0, all of the solutions to $E_2(z) = 0$ will be plotted along with some other values.

What would happen if we transformed the zeros of E_2 into \mathbb{D} ?

Graph of Im(h(z)) = 0 and (some of) the translated zeros of E_2 .

Theorem 2: The real values of the function h(z) which occur in the fundamental domain D occur only in the small strip $|y - 6/\pi| < .00028.$

Results

- Our initial conjecture that values of $Re(E_2(z) = 0)$ are rational numbers was incorrect. However, we do know that values of $Re(E_2(z) = 0)$ are very close to rational numbers with small denominators.
- The curve in the \mathbb{D} where Im(h(z)) = 0 is the generating curve for all the "almost-circles" in \mathbb{H} under $SL_2(\mathbb{Z})$.
- When the zeros of $E_2(z)$ are translated into \mathbb{D} , they lie on the curve where Im(h(z)) = 0
- The real values of the function h(z) which occur in the fundamental domain D occur only in the small strip |y 6/π| < .00028.
- Lots of great experience and exposure to different areas of mathematics! :)

Acknowledgements

- My wonderful mentors Dr. Matthew Young and Dr. Sheng-Chi Liu!
- Funded by the National Science Foundation and Texas A&M University