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Abstract. We prove that for each fundamental discriminant −D < 0 there exists at
least one ideal class group character χ of Q(

√
−D) such that the L–function L(χ, s) is

nonvanishing at s = 1
2 . In addition, assuming that L(χ0,

1
2 ) ≤ 0 where χ0 is the trivial

character, we prove that the class number h(−D) satisfies the effective lower bound

h(−D) ≥ 0.1265 · εD 1
4 log(D)

for each fundamental discriminant −D < 0 with D ≥ (8π/eγ)(
1
2−ε)

−1

where 0 < ε < 1/2 is
arbitrary and fixed (here γ is Euler’s constant).

1. Introduction and statement of results

It is well known that the L–function L(χ, s) of an ideal class group character χ of an imag-
inary quadratic field K = Q(

√
−D) can be expressed in terms of values of the real-analytic

Eisenstein series for SL2(Z) at Heegner points. In this paper we will exploit this relationship
to study two related arithmetic problems. First we show that for each fundamental discrim-
inant −D < 0, there exists at least one χ such that the central value L(χ, 1

2
) 6= 0. Next, by

building on ideas of Iwaniec and Sarnak [IS] and Kowalski and Iwaniec [IK], we show that if
L(χ0,

1
2
) ≤ 0 where χ0 is the trivial character, then the class number h(−D) of K satisfies

the effective lower bound

h(−D) ≥ 0.1265 · εD
1
4 log(D)

for each fundamental discriminant −D < 0 with D ≥ (8π/eγ)( 1
2
−ε)−1

where 0 < ε < 1/2 is
arbitrary and fixed (here γ is Euler’s constant).

In order to discuss these results in more detail we fix the following notation. Let −D < 0
be a fundamental discriminant, K = Q(

√
−D) be an imaginary quadratic field, OD be the

ring of integers, ω be the number of units in OD, Cl(OD) be the ideal class group of K, h(−D)

be the class number, and Ĉl(OD) be the group of characters of Cl(OD). Given χ ∈ Ĉl(OD),
the class group L-function is defined by

L(χ, s) =
∑

C∈Cl(OD)

χ(C)ζC(s),

where

ζC(s) =
∑

06=a∈C
a integral

N(a)−s, Re(s) > 1

2010 Mathematics Subject Classification. 11M41, 11F67.
1



2 S. DITTMER, M. PROULX, AND S. SEYBERT

and N(a) is the norm of a. It is known that if χ is nontrivial, then L(χ, s) extends to an
entire function on C and satisfies the functional equation

Λ(s) = Λ(1− s),
where

Λ(s) := (2π)−sΓ(s)Ds/2L(χ, s).

The central value is L(χ, 1
2
).

The nonvanishing of central values of automorphic L-functions is a problem of great impor-
tance in number theory. While it is difficult to determine whether an individual L–function
is nonvanishing, progress can often be made by studying L-functions in families. The class
group L–functions provide an interesting example of such a family (see [DFI], [FI], [B]). The
nonvanishing of their central values was studied by Blomer [B], who used deep techniques in
analytic number theory to prove that as D →∞,

#{χ ∈ Ĉl(OD) : L
(
χ, 1

2

)
6= 0}

h(−D)
≥ c

∏
p|D

(
1− 1

p

)
(1)

for some explicit c > 0. This result is ineffective in the sense that one does not know how
large D must be for (1) to hold due to an application of Siegel’s theorem in the proof.

We will show that there is always at least one χ ∈ Ĉl(OD) such that L(χ, 1
2
) 6= 0.

Theorem 1.1. For each fundamental discriminant −D < 0 there exists at least one χ ∈
Ĉl(OD) such that L

(
χ, 1

2

)
6= 0.

It is expected that for each −D < 0 one has L
(
χ, 1

2

)
6= 0 for all χ ∈ ̂CL(OD). We have

calculated the following table of L-values for small D with prime class number h(−D) using
the identity (2).

Table 1. L-function Values for Small D.

−D h(−D) L-function Values at s = 1
2

−3 1 −0.702237
−4 1 −0.975066
−7 1 −1.67442
−8 1 −1.60701
−11 1 −1.44805
−15 2 −2.69732, 0.111442
−19 1 −1.17474
−20 2 −2.45292, 0.154738
−23 3 −3.5857, 0.174036, 0.174036
−24 2 −2.29555, 0.179696

...
...

...
−47 5 −4.82435, 0.359728, 0.247743, 0.247743, 0.359728

...
...

...
−71 7 −5.99259, 0.521411, 0.417899, 0.252331, 0.252331, 0.417899, 0.521411

...
...

...
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Our proof of Theorem 1.1 is inspired by the notion of “quantification in the cusp” discussed
by Michel and Venkatesh in [MV]. To study the nonvanishing of L(χ, 1

2
) we use the following

exact formula for the first moment,

1

h(−D)

∑
χ∈Ĉl(OD)

L(χ, 1
2
) =

2

w

(√
D

2

)− 1
2

f(zOD
, 1

2
),

where f(z, 1
2
) is essentially the central derivative of the real-analytic Eisenstein series for

SL2(Z) and zOD
is the Heegner point corresponding to the trivial ideal class (see Propositions

2.1 and 2.2). The Heegner point zOD
lives high in the cusp of SL2(Z)\H. Since the Fourier

expansion of f(z, 1
2
) is dominated by its constant term, which depends only on the imaginary

part of z, we are able to prove that f(zOD
, 1

2
) 6= 0 for all D.

Another problem of great importance in number theory is that of finding effective lower
bounds for the class number h(−D). Very strong effective lower bounds which are conditional
on the location of the zeros of the quadratic Dirichlet L–function L(χD, s) have been known
for many years. For example, in 1918, Hecke and Landau proved that if L(χD, s) does not
vanish in the region s > 1− a/ log(D) then

h(−D) > b
D

1
2

log(D)

where a and b are effective, positive constants (see [IK, Proposition 22.2]). However, it is
natural to ask if strong effective lower bounds can be obtained without assuming anything
about the location of the zeros. This question was discussed by Iwaniec and Sarnak [IS,
section 5] in the context of nonnegativity of central values of automorphic L–functions.
Namely, Iwaniec and Sarnak remarked that if one knew that L(χD,

1
2
) ≥ 0, then one could

“eliminate in part the Landau-Siegel lacuna” discussed in [IS, section 2].1 This idea was
revisited in Iwaniec and Kowalski [IK, section 22.3], where they explained how to use the
condition L(χD,

1
2
) ≥ 0 to establish an effective lower bound of the form

h(−D)� D
1
4 log(D).

Using methods similar to those in the proof of Theorem 1.1, we will elaborate on the argument
of Iwaniec and Kowalski and make this lower bound completely explicit.

Theorem 1.2. Let −D < 0 be a fundamental discriminant with D ≥ (8π/eγ)( 1
2
−ε)−1

where
0 < ε < 1/2 is arbitrary and fixed (here γ is Euler’s constant). Assume that L(χD,

1
2
) ≥ 0.

Then

h(−D) ≥ 0.1265 · εD
1
4 log(D).

It is not difficult to show that GRH implies L(χD,
1
2
) ≥ 0. As remarked by Iwaniec and

Kowalski [IK, section 22.3], this result “may conceivably be established sometime without
recourse to the GRH”. In fact, it should be emphasized that there are many examples
of automorphic L–functions which are known unconditionally to have nonnegative central
values (see [IS, section 5]). This is striking considering the difficulty of proving such a result
in the “simplest” case of a quadratic Dirichlet L–function.

1The condition L(χ0,
1
2 ) ≤ 0 is equivalent to L(χD,

1
2 ) ≥ 0 since L(χ0, s) = ζ(s)L(χD, s).
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2. Averaging L-functions

Recall that each ideal class C ∈ Cl(OD) contains a reduced, primitive integral ideal

a = Za+ Z
(
b+
√
−D

2

)
with a = N(a). Moreover, the point

za =
b+
√
−D

2a

lies in the standard fundamental domain for Γ = SL2(Z). Following convention, we call
these points Heegner points. Next define the Eisenstein series

E(z, s) =
∑

γ∈Γ∞\Γ

Im(γz)s, Re(s) > 1

where

Γ∞ =

{(
1 n
0 1

)∣∣∣∣n ∈ Z
}
.

We connect the central L-values, Eisenstein series, and Heegner points with the following

Proposition 2.1. We have

1

h(−D)

∑
χ∈Ĉl(OD)

L(χ, s) =
2

w
ζ(2s)

(√
D

2

)−s
E(zOD

, s).

Proof. Recall the following classical formula due to Hecke,

ζ[a](s) =
2

w
ζ(2s)

(√
D

2

)−s
E(za, s).

Then

L(χ, s) =
2

w
ζ(2s)

(√
D

2

)−s ∑
[a]∈Cl(OD)

χ(a)E(za, s),(2)

so we have ∑
χ∈Ĉl(OD)

L(χ, s) =
2

w
ζ(2s)

(√
D

2

)−s ∑
[a]∈Cl(OD)

E(za, s)
∑

χ∈Ĉl(OD)

χ(a).

By the orthogonality relations,∑
χ∈Ĉl(OD)

χ(a) =

{
h(−D), [a] = [OD]

0, otherwise.
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Therefore

1

h(−D)

∑
χ∈Ĉl(OD)

L(χ, s) =
2

w
ζ(2s)

(√
D

2

)−s
E(zOD

, s).

�

Proposition 2.2. Let

f(z, s) := ζ(2s)E(z, s).

Then for z = x+ iy we have

f(z, s) =
√
y (log(y)− log(4πe−γ))

+ 4
√
y

∞∑
n=1

τs− 1
2
(n)Ks− 1

2
(2πny) cos(2πnx) +O(s− 1

2
),

where γ is Euler’s constant,

τs(n) =
∑
ab=n

(a
b

)s
and Ks(t) is the K-Bessel function.

Proof. Recall the Fourier expansion (see [IK, eq. (22.46)])

f(z, s) = ysζ(2s) +
√
π

Γ(s− 1
2
)ζ(2s− 1)

Γ(s)
y1−s

+
4πs

Γ(s)

√
y
∞∑
n=1

τs− 1
2
(n)Ks− 1

2
(2πny) cos(2πnx).

We have

ζ(2s) =
1

2(s− 1
2
)

+ γ +O(s− 1
2
)

and
ys = y

1
2 (1 + log y(s− 1

2
) +O(s− 1

2
)),

thus

ysζ(2s) =
y

1
2

2(s− 1
2
)

+ γy
1
2 +

1

2
y

1
2 log y +O(s− 1

2
).

Also recall the functional equation

π
−s
2 Γ
(s

2

)
ζ(s) = ζ(1− s)Γ

(
1− s

2

)
π−

1−s
2 .

Making the change of variables s→ 2s− 1 in this equation yields

π
1
2
−sΓ(s− 1

2
)ζ(2s− 1) = ζ(2− 2s)Γ(1− s)π−(1−s),

and thus
√
π

Γ(s− 1
2
)ζ(2s− 1)y1−s

Γ(s)
=
π2s−1Γ(1− s)y1−s

Γ(s)
ζ(2− 2s).

We want to calculate the Taylor expansion of

π2s−1Γ(1− s)y1−s

Γ(s)
ζ(2− 2s)
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at s = 1
2
. We have

ζ(2− 2s) =
1

2(s− 1
2
)

+ γ +O(s− 1),

and

π2s−1Γ(1− s)y1−s

Γ(s)
= y

1
2 + α(s− 1

2
) +O(s− 1

2
)2,

where

α :=
d

ds

(
π2s−1Γ(1− s)y1−s

Γ(s)

)∣∣∣∣
s= 1

2

.

A straightforward calculation shows

α = y
1
2 (2 log π − log y + 2γ + 2 log 4).

Putting things together, we get

π2s−1Γ(1− s)y1−s

Γ(s)
ζ(2− 2s) =

−y 1
2

2(s− 1
2
)

+ γy
1
2 + (−1

2
)y

1
2 (2 log π − log y + 2γ + 2 log 4),

which after simplification gives

f(z, s) =
√
y(log y − log(4πe−γ))

+ 4
√
y
∞∑
n=1

τs− 1
2
(n)Ks− 1

2
(2πny) cos(2πnx) +O(s− 1

2
).

�

3. Proof of Theorem 1.1

By combining Propositions 2.1 and 2.2, we obtain the identity

1

h(−D)

∑
χ∈Ĉl(OD)

L(χ, 1
2
) =

2

w

(√
D

2

)− 1
2

f(zOD
, 1

2
),

where zOD
= b+

√
D

2
, x = b

2
, y =

√
D
2

and

f(zOD
, 1

2
) =
√
y
(

log(y)− log(4πe−γ)
)

+ 4
√
y
∞∑
n=1

τ0(n)K0(2πny) cos(2πnx).

It suffices to show f(zOD
, 1

2
) 6= 0 for all D. We assume that f(zOD

, 1
2
) = 0 for some D and

obtain a contradiction. From [GR, (8.451.6)] we have that

K0(t) =

√
π

2t
e−t
(

1 +
θ

2t

)
for t > 0 where |θ| ≤ 1

4
. This, along with y ≥

√
3

2
allows us to bound the K-Bessel function

term as

|K0(2πny)| ≤
(

1 +
1

8
√

3π

)√
1

4ny
e−2πny.
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Using the elementary bound τ0(n) ≤ 2
√
n, we bound the infinite sum in the Fourier expansion

by∣∣∣∣∣4√y
∞∑
n=1

τ0(n)K0(2πny) cos(2πnx)

∣∣∣∣∣ ≤ 4
∞∑
n=1

|2√nyK0(2πny)|

≤
(

4 +
1

2
√

3π

) ∞∑
n=1

e−2πny

=

(
4 +

1

2
√

3π

)
· e−2πy

1− e−2πy
≤
(

4 +
1

2
√

3π

)
· e−π

√
3

1− e−π
√

3

< 0.018.

Since f(zOD
, 1

2
) = 0, we have

|√y
(
log(y)− log(4πe−γ)

)
| =

∣∣∣∣∣4√y
∞∑
n=1

τ0(n)K0(2πny) cos(2πnx)

∣∣∣∣∣ < .018.

Therefore

| log(y)− log(4πe−γ)| ≤ 2√
3
|√y(log(y)− log(4πe−γ))| < .021.

This implies

4πe−γ−.021 < y < 4πe−γ+.021,

so that 6.90 < y < 7.21. But using this bound, we can improve the bound on the infinite
sum to∣∣∣∣∣4√y

∞∑
n=1

τ0(n)K0(2πny) cos(2πnx)

∣∣∣∣∣ ≤
(

4 +
1

2
√

3π

)
e−π·13.8

1− e−π·13.8
< 6.08 · 10−19.

Repeating the previous argument with this much sharper bound, we find that

4πe−γ−6.08·10−19

< y < 4πe−γ+6.08·10−19

and

199.12076 < 4y2 < 199.12077.

But since y =
√
D
2

, we have 199 < D < 200, so that D 6∈ Z, a contradiction. Thus

f(zOD
, 1

2
) 6= 0 for all D. �

4. Proof of Theorem 1.2

By (2) we have

L(χ, 1
2
) =

2

w

(√
D

2

)− 1
2 ∑

[a]∈Cl(OD)

χ(a)f(za,
1
2
),

where za = b+
√
D

2N(a)
, x = b

2N(a)
, y =

√
D

2N(a)
and

f(za,
1
2
) =
√
y(log y − log(4πe−γ)) + 4

√
y

∞∑
n=1

τ0(n)K0(2πny) cos(2πnx).
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Therefore, a calculation yields

L(χ, 1
2
) =

2

w

∑
[a]∈Cl(OD)

χ(a)√
N(a)

{
log

(
α
√
D

N(a)

)
+ 4

∞∑
n=1

τ0(n)K0

(
πn
√
D

N(a)

)
cos

(
πnb

N(a)

)}
,

(3)

where α := eγ/8π.
Let χ = χ0 be the trivial character. Then L(χ0,

1
2
) = ζ(1

2
)L(χD,

1
2
), where L(χD, s) is the

Dirichlet L–function associated to the Kronecker symbol χD. Assume that L(χD,
1
2
) ≥ 0, so

that L(χ0,
1
2
) ≤ 0. Then by (3) we obtain

2

ω

∑
[a]∈Cl(OD)

1√
N(a)

log

(
α

√
D

N(a)

)
≤ |E|,(4)

where

E :=
2

ω

∑
[a]∈Cl(OD)

4√
N(a)

∞∑
n=1

τ0(n)K0

(
πn
√
D

N(a)

)
cos

(
πnb

N(a)

)
.

Assume now that log(α
√
D) ≥ ε log(D) for some arbitrary, fixed 0 < ε < 1/2 (in particular,

under this assumption ω = 2). Split the sum on the left hand side of (4) as S1 + S2, where

S1 :=
∑

1≤N(a)≤α
√
D

1√
N(a)

log

(
α

√
D

N(a)

)
,

S2 :=
∑

α
√
D<N(a)≤

√
D
3

1√
N(a)

log

(
α

√
D

N(a)

)
.

Then each summand in S1 is nonnegative and we have

S1 ≤ |E|+ |S2|.

Using N(a) ≤
√
D/3, we argue as in the proof of Theorem 1.1 to obtain

|E| ≤
(

4 +
1

2
√

3π

) ∑
[a]∈Cl(OD)

∞∑
n=1

2
√
n√

N(a)

(
2n
√
D

N(a)

)− 1
2

exp

(
−πn

√
D

N(a)

)

=

(
4
√

2 +
1√
6π

)
D−

1
4

∑
[a]∈Cl(OD)

∞∑
n=1

exp

(
−πn

√
D

N(a)

)
≤ C1D

− 1
4h(−D),

where

C1 :=

(
4
√

2 +
1√
6π

)(
e−π

√
3

1− e−π
√

3

)
.
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Next, we have

|S2| =

∣∣∣∣∣∣∣
∑

α
√
D<N(a)≤

√
D
3

1√
N(a)

log

(
α

√
D

N(a)

) ∣∣∣∣∣∣∣
≤

∑
α
√
D<N(a)≤

√
D
3

∣∣∣∣ 1√
α
D−

1
4 log

(
α
√

3
)∣∣∣∣

≤

∣∣∣∣∣ log(α
√

3)√
α

∣∣∣∣∣hΩD
D−

1
4

≤ C2D
− 1

4hΩD
,

where

C2 :=
log(α

√
3)√

α

and

hΩD
:= #{za |

√
3

2
≤ Im(za) ≤

1

2α
}.

Clearly, hΩD
≤ h(−D). On the other hand, since each term in the summand of S1 is

positive, we have (discarding every term except the one with N(a) = 1)

S1 ≥ log(α
√
D) ≥ ε log(D).

The second inequality is satisfied for all D ≥ (8π/eγ)( 1
2
−ε)−1

. Putting things together, we
conclude after a short calculation that

h(−D) ≥ 0.1265 · εD
1
4 log(D).

�

Remark. Note that by the equidistribution of Heegner points [D] we have

hΩD

h(−D)
−→ 1− 2

3
πα ≈ .852

as D →∞.
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