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Abstract. The A-discriminant variety, ∇A, is the irreducible algebraic hypersurface de-
scribing all polynomials with singular complex zero sets and exponent sets contained in A.
The connected components of the real complement of ∇A (under log-absolute value) are
called discriminant chambers, and are regions in coefficient space where the topology of
the real zero set is constant. The Horn-Kapranov Uniformization provided us an efficient
parametrization of∇A. Moreover, the tropicalA-discriminant is a polyhedral approximation
to the image of the log-absolute value applied to ∇A, and is an important first step toward
computationally tractable approximations of discriminant chambers. Such approximations
are central in providing results on the topology of real zero sets and faster homotopies pre-
serving the number of real roots. Understanding the real solutions of polynomial equations
has applications in numerous disciplines such as robotics and game theory. We are devel-
oping two software packages, one for visualizing the A-discriminant chambers and one for
computing their tropicalizations when A has cardinality n+ 4.

1. Introduction

The use of polynomial models can be found in a number of areas including robotics, math-
ematical biology, game theory, statistics and machine learning. Furthermore, many of the
models describing the physical world involve solving systems of real polynomial equations.
However, polynomial systems whose real roots lie outside the reach of current algorithmic
techniques are commonly found in industry. Many of these problems involve sparse polyno-
mials with few terms. Though the number of terms may be few, these polynomials can be
of high dimension. Abel’s Theorem states that, for polynomials of degree 5 or higher, it is
not possible to express the general solutions of polynomial equations in terms of radicals.
This theorem points to the need for more general iterative algorithms that go beyond taking
radicals.

1.1. Sturm Sequences. In the 19th century, Sturm sequences were used as a method to find
information on the number of real roots of a polynomial between two points. To implement
this algorithm for any f ∈ R[xi] of degree d, we define the Sturm sequence to be Pf :=
(p0, · · · , pd), where p0 := f, p1 := f ′, pi := qi+1pi+1 − pi+2 for all i ∈ {0, · · · , d− 2}, and qi+1

and −pi+2 are the quotient and remainder, respectively, obtained from dividing pi by pi+1.
Also, define Pf (c) := (p0(c), · · · , pd(c)) for any c ∈ R and Vf (c) to be the number of sign
changes in the sequence Pf (c). Then, let σ : R → {−1, 0, 1} be the sign function, which
maps all positive numbers to 1, negative numbers to -1, and 0 to 0. The number of roots
between points a and b can then be found by computing Vf (a)− Vf (b).
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Example 1.1. To solve for the number of roots between −3 and 3 for the polynomial, f(x) =
x4− 2x2 + 1, we calculate the Sturm sequence, Pf (x) := (x4− 2x2 + 1, 4x3− 4x, x2− 1, 0, 0).
Inputting −3 and 3 gives us
σ(Pf (−3)) = (1,−1, 1) and σ(Pf (3)) = (1, 1, 1). Because Vf (−3) − Vf (3) = 2 , we know

there are 2 real roots between -3 and 3 for f .

The algorithm offers a relatively simple method to calculate the real roots between two
points. However, the polynomials in the Sturm sequence can contain coefficients with hun-
dreds of thousands of digits when the given polynomial is in high dimensions. These results
can occur even when the number of terms of the polynomial is relatively small. Therefore,
we look to other methods for information of the real roots of a polynomial.

2. Preliminaries

It can be useful, when dealing with sparse polynomials, to classify polynomials based on
the number of variables to the number of terms rather than on its degree. For example, the
polynomial, f(x, y) = c0x

3 + c1x
2y+ c2y

3 + c3, can be classified as a cubic polynomial based
on the degree. f(x, y) can also be classified as a bi-variate, 4-nomial. We can classify any
polynomial as an n-variate, (n+ k)-nomial, where n is the number of variables and (n+ k)
is the number of terms. To study the real zero set of an n-variate n+ k-nomial , we can first
focus on finding the degenerate roots.

Definition 2.1. ζ ∈ C is a degenerate root of f(x1, x2, ..., xn) if

f(ζ) =
∂f

∂x1
(ζ) =

∂f

∂x2
(ζ) = · · · = ∂f

∂xn
(ζ) = 0

We can find which polynomials within a family of polynomials have degenerate roots where
the family is represented by a support.

Definition 2.2. Given f(x1, x2, ..., xn) =
t∑

i=1

cix
ai where t is the number of terms, ci ∈ C,

and ai ∈ Zn. The support of f , is A = {a1, . . . , at}.

Then, the polynomials with degenerate roots are represented by theA-discriminant variety.

Definition 2.3. Fix A = {a1, a2, ...an+k} ⊆ Zn. Then the A-discriminant variety, denoted
by ∇A, is defined as the closure of

{(c1, c2, ..., cn+k) ∈ (C∗)n+k | f(x) =
n+k∑
i=1

cix
ai has a degenerate root}

Furthermore, the A-discriminant polynomial, denoted by ∆A ∈ Z[ci, · · · , cn+k], is defined to
be (up to sign) the irreducible defining polynomial of ∇A.

Example 2.4. Given c0x
2 + c1x+ c2, A = {2, 1, 0},

∆A = c21 − 4c0c2 and each element in
∇A is a solution to the equation c21 − 4c0c2 = 0 These elements, such as (2, 4, 2) and

(1, 6, 9), correspond to polynomials with support, A with degenerate roots. (2, 4, 2)and (1, 6, 9)
represent 2x2 + 4x+ 2 and x2 + 6x+ 9 respectively.
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3. Amoeba and Viro Diagrams

We can visualize ∇A by taking log-absolute value of the zero set of ∆A.

Definition 3.1. For any polynomial of the form f(x) =
n∑

i=1

cix
ai its amoeba is defined to

be {Log|x| | xi ∈ C∗, f(x) = 0}.

Important information can be found by studying the real complement of the amoeba.

Theorem 3.2 (Archimedean Amoeba Theorem [3]). The complement of Amoeba(f) in Rn

is a finite disjoint union of open convex sets. Each unbounded open convex set is called an
outer chamber.

The outer chambers of the amoeba are regions in coefficient space where the topology of
the real zero set is constant. In each chamber the topology of the zero sets of the polynomials
are isotopic, meaning that the real zero sets of the polynomials within each chamber can be
continuously deformed into one another. Additionally, there is a one to one correspondence
between the outer chambers and the triangulation for the polynomials within the chamber.
These triangulations can help us to find the Viro diagrams of the polynomials within the
corresponding chamber.

The Viro diagram for a polynomial, f , obtained from the traingulation in a chamber is
isotopic to the topology of the real zero set of f . To construct the Viro diagram for f , we
must find the convex hull and the newton polytope of f .

Definition 3.3. For N points p1, ..., pN , the convex hull C is given by the expression

C ≡
N∑
j=1

λjpj : λj ≥ 0 for all j and
N∑
j=1

λj = 1. In other words, the convex hull of S is

the smallest convex set containing S, denoted Conv(S). Additionally, given f(x1, ..., xn) =
t∑

i=1

cix
ai for ci ∈ C \ {0}, the newton polytope is Newt(f) = Conv(Supp(f)). Also we can

define triangulation of a point set S to be a simplicial complex
∑

whose vertices lie in
S. Define archnewt(f) by archnewt(f) = Conv({(ai,−log|ci|)}ti=1 ⊆ Rn+1). Finally, let the
lower hull of archnewt(f) be the union of lower faces of archnewt(f).

Once we’ve obtained the triangulation, we label the vertices of the newton polytope of
f based on the sign of the polynomial coefficient corresponding to each vertex. Between
alternating signs, we mark the midpoints and, within each triangulation, take the convex
hull of the midpoints. The set of convex hulls forms the Viro diagram.

4. Calculating the A-Discriminant Polynomial

Viro diagrams allow us to study the zero set of the A-discriminant polynomial using the
triangulations within each chamber of log|∇A|. The A-discriminant of the quadratic case
mentioned previously is one case of trinomials of the form f(x) = c1 + c2x

d + c3x
D with

0 < d < D and c1, c2, c3 6= 0. We can find the A-discriminant polynomial for trinomials of
this form by first finding xf ′ and setting both equations equal to zero. We can express these
equations in the following form.
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[
1 1 1
0 d D

] c1
c2x

d

c3x
D

 =

[
0
0

]
where Â =

[
1 1 1
0 d D

]
We can also find a generator, B, for the right null-space of Â which gives us the equations:
b1 + b2 + b3 = 0 and db2 +Db3 = 0. We can then express the generator in terms of D and d.
So  c1

c2x
d

c3x
D

 = α

D − d−D
d


We can manipulate these equations to obtain the A-discriminant polynomial for our trino-
mials. (

c1
D − d

)D−d(−c2
D

)−D (c3
d

)d
− 1 = 0

Now, we will introduce two ways to determine the A-discriminant polynomial for more
complicated cases through resultants and the Horn-Kapranov Uniformization.

4.1. Resultant. In order to explain the resultant method, we need to explain what the
Sylvester Matrix is.

Definition 4.1. If we have two univariate polynomials f(x) = a1x+ a2x
2 + · · ·+ anx

n and
g(x) = b1x + b2x

2 + · · · + bmx
m, then the Sylvester Matrix of f and g is the following

(n+m)× (n+m) square matrix:

Syl(f, g) =



an an−1 · · · a1 0 · · · 0
0 an an−1 · · · a1 · · · 0
...
0 · · · 0 an an−1 · · · a1
bm bm−1 · · · b1 0 · · · 0
0 bm bm−1 · · · b1 · · · 0
...
0 · · · 0 bm bm−1 · · · b1


The resultant of two polynomials is the determinant of the Sylvester matrix. More for-

mally:

Definition 4.2. The Resultant of two univariate polynomials f and g (as defined above) is
the determinant of the Sylvester Matrix of f and g. That is,

Res(f, g) = det(Syl(f, g))

A theorem from Gelfand, Kapranov and Zelevinski [3] explains why we can use the resul-
tant to obtain the A-discriminant polynomial.

Theorem 4.3. Let f(x) = a1x + a2x
2 + · · · + anx

n and g(x) = b1x + b2x
2 + · · · + bmx

m.
Then Res(f, g) = 0 ⇐⇒ f(x) = g(x) = 0 has a common complex root or an = bm = 0
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The A-discriminant polynomial is a polynomial that vanishes whenever our polynomial
and its first derivative have a common root. If we apply the resultant to a univariate
polynomial and its derivative, we find that ∆A is a factor of the resultant.

However, as the number of terms increase, we can easily obtain huge polynomials via the
resultant method. If we want to visualize∇A, we have to find the roots of ∆A, but this is pre-
cisely our problem: finding the roots of polynomials in higher dimensions. We will introduce
another way to determine the A-discriminant called the Horn Kapranov Uniformization.

4.2. Horn-Kapranov Uniformization. The Horn-Kapranov Uniformization gives us an
explicit parametrization of ∇A without knowing the A-Discriminant polynomial.

Theorem 4.4 (M. Kapranov [4]). Let A = {a1, · · · , an+k} ∈ Zn be the support for f ∈ FA
and define the following matrix:

Â =

(
1 · · · 1
a1 · · · an+k

)

The parametrization of ∇A is given by the closure of

∇A =
{

[β1λ1t
a1 : · · · : βn+kλn+kt

an+k ]| β ∈ Cn+k, ÂB = 0, t ∈ (C∗)n
}

where βi are the rows of B.

Example 4.5. Considering the cubic case, f(x) = c0 +c1x+c2x
2 +c3x

3, we can parametrize
∇A as follows:{

[λ1t
0 : λ2t

1 : (−3λ1 − 2λ2)t
2 : (2λ1 + λ2)t

3] | λ1, λ2 ∈ C, t ∈ C∗
}

We can reduce the dimension of our polynomial to study the real part of ∇A. Assuming

that c0 and c2 are nonzero, 1
c0
f
(

( c0
c2

)1/2x
)

gives us roots that only differ by some scalar.

Then, we reduce the study of f(x) to the study of 1 + γx+x2 +βx3. We obtain the next two
dimensional parametrization for ∇A, denoted as ∇̄A:

∇̄A =

{(
λ1(2λ1 + λ2)

2

(−3λ1 − 2λ2)3
,
λ2(2λ1 + λ2)

(−3λ1 − 2λ2)2

)
| λ1, λ2 ∈ C

}
In order to visualize our parametrization on logarithmic paper, Amoeba(∆A), we can

define the following function ϕ : Rk−1 → Rn+k as ϕ(λ) := Log|λBT |. Here, B is a matrix

whose columns form a basis for the right nullspace of Â. In order to explain one important
property of this function, we need to define the Minkowski sum.

Definition 4.6. For any two subsets U, V ⊆ Rn, we define the Minkowski Sum U +V to be
the set {u+ v | u ∈ U, v ∈ V }.

There is a corollary [1] that tells us that Log|∇A| is the minskowski sum of the image of
ϕ(λ) and the row space of Ā.

We can generalize the reduction process by applying B as right-multiplication. Then we
will obtain the following:

Log|∇̄A| = Log|(∇A)B| = Log|∇A|B = Log|λBT |B
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The map that gives us the parametrization of the reduced A-discriminant variety is ϕ̄ :
Pk−2
R \ HB → Rk−1 defined as ϕ̄(λ) = log |λBT |B.

Following Example 4.5, ϕ̄ gives us: λ1, λ2 ∈ P1
R \ {[0 : 1], [1 : 0], [2 : −3], [−1 : 2]}:

(log |λ1|+ 2 log |2λ1 + λ2| − 3 log |3λ1 + 2λ2|, log |λ2|+ log |2λ1 + λ2| − 2 log |3λ1 + 2λ2|)

4.2.1. Hyperplane Arrangements. There are many points where ϕ̄(λ) blow up to negative
infinity. We can represent all those points using the concept of hyperplanes. A hyperplane
H ∈ Rn is any set of the form

H = {x ∈ Rn | a1x1 + · · ·+ anxn = c}
for a ∈ Rn and real number c. An arrangement of hyperplanes is a finite set H in a projective
space P.

In our particular case, we can define the hyperplane arrangement as follows:

Definition 4.7. Following the notation of Theorem 4.4,

HB = {[λ ∈ Pk−2
R ] | λβi = 0 for some i ∈ {1, · · · , n+ k}}

is called the hyperplane arrangement corresponding to B [6].

Note that log |λBT | is undefined at the λ’s that belong to HB. Then it is clear that,
as ϕ̄ approaches λ ∈ HB, ϕ̄ blows up to negative infinity times each of the rows of B.
The hyperplane arrangement of a given support provides us useful information to easily
parametrize the A-discriminant variety.

5. From Projective Space to the Reduced A-Discriminant Ameoba

In this section we will explain what we did in our project to visualize the A-discriminant
variety when A has cardinality (n+ 4).

There already exists a Sage code from Korben Rusek [7] that plots the contour of the
reduced A-discriminant amoeba for any support of cardinality n + 3 where the contour is
the image of the real zero set of a polynomial under the Log| · | map. Rusek also created
an animation to visualize the quartic case. We are still developing a sofware package, using
Sage, that will plot the contour of the reduced A-discriminant amoeba for any support A
with cardinality n+ 4.

Definition 5.1. Let K be any field. We define the projective space P over the field K as
follows:

Pn
K := {[z0 : · · · : zn] | zi ∈ K not all zero}

with the identification

[z0 : · · · : zn] = [z0λ : · · · : znλ] for all λ ∈ K∗

.

Most of the time, we use the projective space over the field of real numbers. For example,
points in P1

R, represent lines through the origin in R2. Lines in P2
R, represent planes through

the origin in R3.
Going back to Example 4.5, the hyperplane arrangement corresponding to B is {[0 :

1], [1 : 0], [2 : −3], [−1 : 2]}. Note that all of the points in P1
R correspond to a set of lines
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through the origin in R2 where ϕ̄(λ) blow up to infinity. We can represent the four projective
points using S1.

Figure 1: Projective points on S1 for Example 4.5

ϕ̄(λ) maps each arc segment of the unit semi-circle P1
R to a piece of the contour of the

reduced ∇A in R2.
There is one important difference between the n-variate (n + 3)-nomials and n-variate

(n+ 4)-nomials. In the n+ 4-case, the basis for the right null-space of Â always consists of
three columns. Instead of lines through the origin, ϕ̄(λ) has whole planes through the origin
in R3 where our map blow up to the infinity. We can represent all those planes as lines in
P2
R.
We present an outline of the algorithm that we are working to implement in Sage to

visualize the reduced A-discriminant amoeba in R3.

Algorithm 5.2.
• Input: Support A ⊂ Zn with #A = n+ 4
• Output: Surface of the reduced amoeba in R3

(1) Basis for the right null-space of Â
(2) Determine the planes where ϕ̄(λ) blow up to infinity and represent it as circles (lines)

in P2

(3) Find the intersection lines between the planes and represent it as points in P2

(4) Store all the information of vertices, edges and faces

Figure 2: Projective lines and Points in P2 for the quartic case

After step (4) we can correspond any piece of the hemisphere to a piece of the reduced
A-discriminant amoeba. Then we can map all the pieces to the corresponding pieces of
the reduced amoeba using ϕ̄(λ). Figure 2 shows us the arrangement of lines, including
intersection points, where ϕ̄(λ) blow up to negative infinity.
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6. Computing A-Discriminant Chambers

A-discriminants are central in real root counting because the complement of the real part of
∇A determines where in coefficient space the real zero set of a polynomial changes topology.
The connected components of the complement of the real part Log|∇A| describe regions in
coefficient space (called discriminant chambers) where the topology of the real zero set of a
polynomial system is constant.

It follows that if we know which chamber our polynomial lives in, we can visualize the
topology of the positive zero set of the polynomial and count the number of real roots. We
will explore the methods that will help us compute the A-discriminant chambers in the case
where A has cardinality (n + 2), (n + 3), and (n + 4). The main results of our project deal
with computing the tropical A-discriminant of (n+ 4)-nomials.

The formal definition of the discriminant chamber is as follows:

Definition 6.1. Suppose A = {a1, ..., an+k} ⊂ Zn and ∇A is a hypersurface. Any con-
nected component C of the complement of ∇A in Pn+k−1

R \ {c1 · · · cn+k = 0} is called a (real)
discriminant chamber [1].

We define a (convex) cone in Rn+k to be any subset closed under nonnegative linear
combinations. The cones will help us characterize subregions called the chamber cones
where the number of real roots is easy to compute.

We start with finding the chambers for n-variate (n+ 2)-nomials.

6.1. Computing the A-discrimiant chambers for n-variate (n+2)-nomials.
Let f(x) = c0 + c1x+ c2x

2. We reduce the A-discriminant polynomial to 1
4
, which is just

a point. It follows that we can parametrize quadratics with one number which is the point
1
4

from the reduced A-discriminant polynomial, ∆A. Then we evaluate ∆A at some given
coefficients c1, ..., cn+2 to see if ∆A is positive, negative, or zero.

In any given orthant (selections of signs for the ci) there are exactly 2 connected compo-
nents for the complement of the zero set of ∆A and they are determined by the sign of ∆A.
If the polynomial is in the orthant where c0, c1, c2 > 0 there are 2 chambers and each one
correspond to a nonzero sign of c21 − 4c0c2 or c0(

c1
−2)−2c2 − 1. Thus, cB tells us that if the

coefficient, c, of the polynomial is small then it lies on the left of 1
4

and if c is big, then it

lies on the right of 1
4
.

6.2. Computing A-discriminant chambers for n-variate (n+3)-nomials.
Now, we will compute the chambers for n-variate (n+3)-nomials. We will see that we can

approximate the amoeba of ∆A using the tropical A-discriminant and the cutting-complex.

Definition 6.2. We call the facets of the (reduced) chamber cones of ∇A (reduced) walls of
∇A. We also refer to walls of dimension 1 as rays [1].

Definition 6.3. When A ⊂ Rn contains a point x such that dimConvA = 1+dimConv(A\
{x}), we say that ConvA is a pyramid.We say that A is a near-circuit when A has cardinality
n+ 3, dimConvA = n, and A is not a pyramid [1].

Definition 6.4. Suppose A ⊂ Zn is a near-circuit. Also let B be any real (n+ 3)×2 matrix

whose columns are a basis for the right null space of Â, and let β1, ..., βn+3 be the rows of
B. Any set of indices J ⊂ {1, ..., n+ 3} satisfying the two conditions:

(1) [βi]i∈J is a maximal rank 1 submatrix of B
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(2)
∑
i∈J

βi is not the zero vector,

is called a radiant subset corresponding to A [1].

Theorem 6.5. Suppose that A ⊂ Zn is a near-circuit. The number of chamber cones of ∇A
and the number of radiant subsets corresponding to A are identical [1].

By Theorem 3.2, each outer chamber of ∇A must be bounded by 2 walls, and the walls
have a natural cyclic ordering. It follows that the number of chamber cones is the same as
the number of rays. In particular, when A ⊂ Z has cardinality (n + 3), ∇A is always a
hypersurface.

We examined Algorithm 3.9 in [BHPR [1]] which inputs a near-circuit A ⊂ Zn of car-
dinality n + 3 and the coefficient vector c of a given polynomial and outputs the chamber
cone determined by the radiant subsets containing f . In particular, this algorithm checks
the radiant subsets as they give us the rays that generate the chamber cones. The algorithm
also computes the shifts of the rays by intersecting the lines to get a better approximation
of ∇A.

The union of the rays generated by the radiant subsets in this algorithm will give us
the tropical A-discriminant, τ(X∗A), which approximates the chamber cones with the rays
starting from the origin.

Definition 6.6. The tropical discriminant is the cone over the logarithmic limit set of ∆A.

We can look at ∇A and find its amoeba by taking the Log| · |. Then we can look at
how the amoeba intersects a sphere. The intersections yield a union of pieces of the great
hemispheres in the limit as the radius goes to infinity. Hence, if we connect the union of
pieces to the origin we will get τ(X∗A).

Shifting the rays will give us a better approximation of the amoeba which is referred
to as the cutting-complex. Both the tropical A-discriminant and the cutting-complex are
polyhedral approximations of the A-discriminant amoeba. Although the cutting-complex
will give us a better approximation of Amoeba(∆A) and its chambers, it is not always so
easy to compute, especially when the number of monomial terms increases. Therefore, the
tropical discriminant is an important step toward building the cutting-complex, which has
nice approximation properties that are currently being investigated.

After identifying which chamber our polynomial lives in, our next step is to determine
the topology of the positive zero set of the polynomial because this will help us count the
number of real roots. We learned earlier that a triangulation of a point set A is a simplicial
complex

∑
whose vertices lie in A (see Definition 3.3). From what we learned about the

triangulations and Viro diagrams, we can visualize the topology of the positive zero set of a
polynomial by plotting the archnewt(f) and look at the lower hull.

The GKZ-Correspondence tells us there is a 1-1 correspondence between the outer cham-
bers and the topology of the real zero set, and the triangulations of the support A. From
the triangulations we can use Viro Diagrams to visualize the topology of the positive zero
set of the polynomial. Thus, by computing which chamber cone contains our polynomial,
we can easily visualize the topology of the positive zero set of the polynomials that lie in the
chamber.
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6.3. Computing the Tropical A-discriminant for n-variate (n+ 4)-nomials.
Although we can extend parts of the algorithm for n-variate (n+3)-nomials to the n-variate

(n + 4) case, computing which chamber the polynomial lives in is more involved. To help
us with the process, we created an algorithm to compute the tropical A-discriminant which
is an important first step toward computationally tractable approximations of discriminant
chambers. To give a more precise definition, the tropical A-discriminant is a polyhedral
approximation to the image of the log-absolute value applied to ∇A. As we have seen in
the (n+ 3)-case, such approximations starts at the origin and can help us easily identify the
chambers cones. This will help us locate the chamber the polynomial lives in and is central
in providing results on the topology of real zero sets and faster homotopies preserving the
number of real roots via the GKZ-Correspondence.

We give an overview of the function of the tropicalA-discriminant, Trop(∆A). Trop(∆A) ∈
Rn+k approximates the amoeba of the A-discriminant ∈ Rn+k. After reducing ∆A, Trop(∆A)
∈ Rk−1 approximates the amoeba of the reduced A-discrimiant ∈ Rk−1. For example, in the
case of 1-variate (n + 4)-nomials, Trop(∆A) ∈ R3 approximates the amoeba of the reduced
A-discriminant ∈ R3.

The algorithm that we created computes the tropical A-discriminant for the quartic.

Algorithm 6.7.

• Input: A ⊂ Zn of cardinality n+ 4
• Output: Tropical A-discriminant, τ(X∗A)

(1) Find the basis for the right null space B corresponding to Â
(2) Compute the negative rows of B, denoted as −βi
(3) Compute the intersections of the −βi’s to find the vertices in HB

(4) Take the linear combination of the −βi’s to find the cones
(5) Compute the 2-dimension cones that make up the walls corresponding to vertices of
HB

(6) The tropical A-discriminant is the union of the walls

We saw earlier that in the case of (n + 4)-nomials, the rows of B are vectors that make
up the hyperplanes in the hyperplane arrangement from Definition 4.7. It follows that,
the hyperplane arrangement in R3 gives us the locus of points where the logarithms blow up
in P2. The Horn-Kapranov Uniformization (HKU) tells us that when λ approaches the line
corresponding to βi, HKU blows up in the direction of −βi, which are the rays.

Definition 6.8. Let
∑

(HB) denote the corresponding polyhedral complex that partitions
all of Pk−2

C . Let any (k − 2)-dimensional cell σ ∈
∑

(HB), and any vertex v ∈
∑

(HB). Let
Wv denote the cone generated by all −βi and βi is a normal to a hyperplane of HB incident
to v. We call Wv a wall of A.

It follows that the walls are the cones generated by the linear combination of the rays.
There are several vertices, and each one determines a wall. We need to find the intersections
of the rays to get the vertices, v, in HB because the set of lines going through each vertex
determines which rays make up the corresponding wall. In the case of a 1-variate (n + 4)-
nomial, each wall is a 2-dimensional cone. The walls are important because they will help
us define the tropical discriminant.

Lemma 6.9. The tropical discriminant, τ(X∗A), is exactly the union of Wv over all vertices
v of HB.
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It follows that τ(X∗A) is constructed by the union of Wv over all vertices v of HB .

Figure 3: Tropical A-Discriminant for the quartic

7. Future Work

We developed a software package in Sage that computes the tropical A-discriminant for
the quartic case. Next, we will be working on computing the tropical A-discriminant for
the general (n + 4) case. Then we want to be able to compute the reduced A-discriminant
amoeba, which is the image of cells of the spherical arrangement under the Horn-Kapranov
Uniformization and compute the shifted walls. Ultimately, we want to develop a software
package to quickly compute which A-discriminant chamber contains the (n+4)-nomials.
When given A ⊂ Zn of cardinality n + 4 and the coefficient vector c of a given polyno-
mial we want to identify which chamber cone contains f . We will also use triangulations
and Viro Diagrams as tools to help us determine the topology which is constant in each
discriminant chamber.



A-DISCRIMINANT CHAMBERS 12

Appendix A.
Sage Code for Algorithm 5.2

#We input the support A as a list. For example, the

#support for the quartic case is written A = [[0,1,2,3,4]]

#The inputs and outputs of each function are listed below.

#Functions:

#1) get_B_list - input a support with cardinality n+4 and return the basis for

#the right null-space of A-hat.

#2) plane_arrangement - input a support with A=n+4, return the plot of the

#hyperplane arrangement corresponding to the B matrix with the unit sphere in R^3.

#3) sphere_lines - input a support with A = n+4, return the representation

#of the undefined planes only as lines on the unit sphere.

#4) get_parametric_eq - input a support with A=n+4, return the parametric

#equations of the circles that we can plot with sphere_lines function.

#5) intersection_points - input a support with A=n+4, return a plot of all the

#intersection points of any two circles on the upper half of the unit hemisphere.

#(the point represent the intersection lines between any two undefined plane in R^3).

#6) get_int_xyz - input a support with #A=n+4, return a list of all the intersection

#points in (x,y,z)-coordinates that represents the intersection lines between

#any undefined planes in R^3.

#7) get_int_lines - input a support with A=n+4, return a list of all pairs of lines

#with intersection.

##########################

def get_B_list(A):

Ah = A + [[1]*len(A[0])]

Am = matrix(Ah).transpose()

Bm = Am.integer_kernel().basis_matrix().transpose()

B = map(lambda b: list(b), list(Bm))

return B

##########################

def plane_arrangement(A):

x,y,z=var(’x,y,z’)

B = get_B_list(A)

G=Graphics()

G+=implicit_plot3d(x^2+y^2+z^2 == 1,(x,-1,1),(y,-1,1),(z,-1,1),color=’blue’)

for i in range(len(B)):

temp = B[i]

G += implicit_plot3d(temp[0]*x +temp[1]*y +temp[2]*z==0,

(x,-1.2,1.2),(y,-1.2,1.2),(z,-1.2,1.2),color=’red’,thickness=20)

return G

##########################

def sphere_lines(A):

B=get_B_list(A)

(u,v) = var(’u,v’)
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p1 = parametric_plot3d([cos(u)*cos(v),cos(v)*sin(u),sin(v)],(u,0,2*pi),

(v, 0, 2*pi),plot_points=[50,50], aspect_ratio=[1,1,1],color = ’blue’)

p2 = parametric_plot3d([cos(u)*cos(v),cos(v)*sin(u),sin(v)],(u,0,2*pi),

(v, 0, 2*pi),plot_points=[50,50], aspect_ratio=[1,1,1],color = ’blue’)

length=len(B)

for i in range(length):

n=B[i]

f(x,y,z) = var(’x,y,z’)

p1 = p1 + implicit_plot3d(n[0]*x + n[1]*y + n[2]*z==0, (x, -1, 1),

(y, -1, 1), (z, 0, 1),aspect_ratio=1,color = ’red’)

N = vector([n[0],n[1],n[2]])

L = N.column()

C = L.integer_kernel().basis_matrix()

U = vector(C[0])

V = vector([N[1]*U[2] - N[2]*U[1], N[2]*U[0] - N[0]*U[2],

N[0]*U[1] - N[1]*U[0]])

U = U/norm(U)

V = V/norm(V)

t=var(’t’)

p2 = p2 + parametric_plot3d([cos(t)*U[0]+sin(t)*V[0],cos(t)*U[1]+sin(t)*V[1],

cos(t)*U[2]+sin(t)*V[2]],(t,0,2*pi),color = ’red’,thickness=6)

return p2

##########################

def get_parametric_eq(A):

B = get_B_list(A)

P=[]

for i in range(len(B)):

n=B[i]

f(x,y,z) = var(’x,y,z’)

N = vector([n[0],n[1],n[2]])

L = N.column()

C = L.integer_kernel().basis_matrix()

U = vector(C[0])

V = vector([N[1]*U[2] - N[2]*U[1], N[2]*U[0] - N[0]*U[2],

N[0]*U[1] - N[1]*U[0]])

U = U/norm(U)

V = V/norm(V)

t=var(’t’)

P.append([cos(t)*U[0]+sin(t)*V[0],cos(t)*U[1]+sin(t)*V[1],

cos(t)*U[2]+sin(t)*V[2]])

return P

##########################

def intersection_points(A):

B = get_B_list(A)

G = Graphics()
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length = len(B)

for i in range(length):

for j in range(length):

if j > i:

a = vector(B[i])

b = vector(B[j])

c = a.cross_product(b)

if c.norm() !=0:

c = c / norm(c)

G+=point([c[0],c[1],c[2]],size=30,color=’green’)

G+=point([-1*c[0],-1*c[1],-1*c[2]],size=30,color=’green’)

return G

##########################

def get_int_xyz(A):

B = get_B_list(A)

P=[]

length = len(B)

for i in range(length):

for j in range(length):

if j > i:

a = vector(B[i])

b = vector(B[j])

c = a.cross_product(b)

if c.norm() !=0:

c = c / norm(c)

if c[2] >= 0:

P.append([c[0],c[1],c[2]])

if c[2] == 0:

P.append([-1*c[0],-1*c[1],c[2]])

else:

P.append([-1*c[0],-1*c[1],-1*c[2]])

return P

##########################

def get_int_lines(A):

B= get_B_list(A)

P=[]

length = len(B)

for i in range(length):

for j in range(length):

if j > i:

a = vector(B[i])

b = vector(B[j])

c = a.cross_product(b)

if c.norm() !=0:

c = c / norm(c)

if c[2] >= 0:



A-DISCRIMINANT CHAMBERS 15

P.append([i,j])

if c[2] == 0:

P.append([i,j])

else:

P.append([i,j])

return P
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