
Binomial Solutions to Smale’s 17th Problem and

their Application to Chemical Reaction Networks

Caleb Xavier Bugg, Morehouse College

July 24, 2014

Abstract

In 1998, Stephen Smale proposed a list of eighteen questions for the
mathematical community. Smale’s 17th problem is concerned with the
development of a deterministic algorithm that can approximate a root of a
random polynomial system in polynomial-time. This project in its current
form provides a positive answer to Smale’s 17th problem for binomial
systems, and explores a concrete application of the algorithm in chemistry.
The main result of this project is an algorithm that approximates a root of
an entire binomial system (n variables, n equations) in polynomial-time.
The algorithm utilizes matrix exponentiation and the Smith Normal Form
of an integer matrix in order convert the system to a simpler system.

Binomial systems are used in a variety of mathematical modeling sit-
uations. In particular, there are sufficient, easily verifiable conditions for
the expression of a chemical reaction network (CRN) as a binomial sys-
tem. We utilize our algorithm to solve these systems to determine the
steady-state concentrations of the species in chemical reaction networks.

1

Contents

1 Introduction 3
1.1 Results . 3

2 Background 4

3 Methods 5
3.1 Monomial Change of Variable . 5
3.2 Real Roots and the Bisection Method 7
3.3 Matrix Exponentiation and Smith Normal Form 9
3.4 Chemical Reaction Networks . 12

4 Future Work 13

5 Algorithm 14

6 References and Acknowledgments 17

2

1 Introduction

This project in its current form provides a simple algorithm that can be used to
approximate the roots of binomial systems. This is the main result of the project
as of now, but continuing efforts of the research team can also yield interesting
results for systems and computational biologists. Smale’s 17th problem calls for
the deterministic algorithm to run in time polynomial, at worst. This means
that as the input grows (degree and number of variables), the computational
complexity grows at time no worse than polynomial to the input (n = number
of variables, d = degree). We show that by making bounding every component
of the algorithm to run polynomial time (at worst), then the average complexity
of the algorithm is polynomial with respect to the input. The methods of this
project will be later shown, and background to the problem discussed. This
research was conducted in an eight-week time period, resulting in a rather small
number of finite application results, despite the wishes and best efforts of the
research team.

The results that follow were implemented into an algorithm that was run in
Sage, a program that utilizes the Python programming language and contains
several useful built-in functions. The software is open-source download, and
subsequently the results can be easily reproduced for those interested.

1.1 Results

The main result of this project was an easily-readable algorithm that could
approximate the root of real binomial systems. It is important to note that
the solutions were restricted to the reals because of the application associated
with this project. As we will later discuss, κ values that denote proportional-
ity constants are strictly positive, resulting in Ordinary Differential Equations
(ODE’s) with real solutions. The algorithm developed for this project will be
written verbatim in section 6, but can be written in pseudo-code as follows:

Algorithm

Def binomial system

1. Before initiating algorithm, convert binomial system into form xA = c

Input: A = [aij] ∈ Zn×n c = (c1, c2, . . . , cn)
Conditions: x = [x1, x2, . . . , xn] y = [y1, y2, . . . , yn] c = (c1, c2, . . . , cn) ∈ Rn+

Output: Approximate Root

2. Calculate the Smith Normal Form of Matrix A. Store U = [uij] V = [vij]
and S = [sij]

3. Perform a monomial change of variable. Let yU = x, then yUA = c and
yS = cV

3

4. Determine yS and cV with matrix exponentiation program. Hence, yα1
1 =

β1 . . . y
αn
n = βn where (α1, . . . , αn) ∈ Nn and (β1, . . . , βn) ∈ R+

5. Solve each equation with bisection method algorithm. Return vector ỹ
∈ Zn

6. Calculate ỹU in order to return variable after monomial change, producing
approximate root vector x̃

7. Test roots in x̃ versus approximate root theorem.

8. End

This algorithm utilizes notation for matrix exponentiation in the preamble
(Conditions before initiating the algorithm) which will be thoroughly discussed.
Also, the Smith Normal Form of an integer matrix was shown to be algorith-
mically computable in time polynomial 35 years ago, by Kannan and Bachem
[1]. Therefore, the 21st century version of Sage can certainly compute the SNF
in time better than polynomial. Lastly, the yU = x and ỹU = x̃ concept is
commonly referred to as a monomial change of variables, which is simple to
show through a later example.

2 Background

In the year 1900, German mathematician David Hilbert proposed a list of
twenty-three mathematical problems to be solved by the mathematical com-
munity in the 20th century. In this spirit, world-renowned mathematician and
Fields Medalist Stephen Smale proposed a list of eighteen nontrivial questions
for the mathematical community in 1998, with the support of the International
Mathematical Union. As to demonstrate the importance of this problem set,
the solution to the second problem was deemed worthy of the Fields Medal.
This project in its current form provides a positive answer to Smale’s 17th
question for binomial systems, and explores a concrete application of the algo-
rithm in chemistry. The 17th question is concerned with the development of
a deterministic algorithm that can find a root of a random polynomial system
in polynomial-time, at worst. This means that as the input grows, the output
runs in time polynomial to the input. The main result of this project is an
algorithm that could find a root of an entire binomial system (n variables, n
unknowns) in polynomial-time. The algorithm utilizes matrix exponentiation
and the Smith Normal Form of an integer matrix in order to assign values to
variables and trace those values back to approximate roots numerically. Then,
Millán et al. (2011) provide sufficient conditions for the expression of a chemical
reaction network (CRN) as a binomial system. Hence, the developed algorithm
can also be used to determine the steady states of CRN’s that meet sufficient
mathematical conditions.

4

We would not like to convey the message that our research efforts towards
this problem are the first of its kind, so let us highlight some previous work.
In 2008, Beltrán & Pardo provided the first holistic partial positive solution to
Smale’s 17th problem. They demonstrated a uniform probabilistic algorithm
that runs in time polynomial. The algorithm is deemed a “Las Vegas Algo-
rithm” because it will tell the user if it fails to run, rather than producing a
false answer. Hence, the algorithm is probabilistic and not deterministic (de-
terministic algorithms run with probability = 1). In 2012, Cucker & Bürgisser
provided a deterministic algorithm for Smale’s 17th problem, but it runs in time
NO(log logN). This complexity is exponential with respect to input N, and there-
fore does not meet the complexity bound to be a complete positive solution to
Smale’s 17th.

3 Methods

The mathematical computations and considerations that correspond to this
project’s algorithm will now be discussed. Several concepts of programming,
linear algebra, algorithmic algebraic geometry, and other disciplines were taught
to the undergraduate researchers before starting this program. The process of
learning higher-level mathematics, and then applying it, is no easy task. So, the
following presented concepts have been discussed tirelessly and many theoretical
components (probability and graph theory, to name two) are simplified for this
paper.

3.1 Monomial Change of Variable

This subsection will begin with the presentation of an example of a monomial
change of variables and then highlight the importance of this concept to this
project. So given the system:

f(x1, x2) := x51 −
49

95
x31x2 + x62

g(x1, x2) := x52 −
49

95
x32x1 + x61

We can rescale the variables and divide by suitable monomial terms to get:

r(y1, y2) := y1 − 1 + y2

s(y1, y2) := 1 +Aya1y
b
2 +Byc1y

d
2

For some real A,B and some rational a, b, c, d,

First, manipulate f such that it is in a suitable form to undergo a variable
change to r, Then,

f(x1, x2) := x51 −
49

95
x31x2 + x62 ⇒

95

49
× f(x1, x2)

x31x2
=

95

49
x21x
−1
2 − 1 +

95

49
x52x
−3
1

5

At this point we substitute, so: y1 = 95
49x

2
1x
−1
2 and y2 = 95

49x
5
2x
−3
1 , so now f

looks like
r(y1, y2) := y1 − 1 + y2

Then, with an established y1 and y2, we manipulate g to look like s. So,

g(x1, x2) := x52−
49

95
x32x1 +x61 ⇒

−95

49
× g(x1, x2)

x1x32
= 1+

−95

49
x22x
−1
1 +

−95

49
x51x
−3
2

But, we have already established a variable change, so we must write this formula
in terms of our known y1 and y2. This requires us to equate an Aya1y

b
2 to

−95
49 x

2
2x
−1
1 and Byc1y

d
2 to −95

49 x
5
1x
−3
2 which is certainly an easy task, which is

why formatting hold such importance. Hence,

A(
95

49
x21x
−1
2)a(

95

49
x52x
−3
1)b =

−95

49
x22x
−1
1

and

B(
95

49
x21x
−1
2)c(

95

49
x52x
−3
1)d =

−95

49
x51x
−3
2

This sets up an easily solvable systems of equations, and we have:

A = (
−95

49
)

3
7

and

B = (
−95

49
)

−8
7

Also,

a =
1

7

b =
3

7

c =
16

7

d =
−1

7

With these calculations, we have transformed

f(x1, x2) := x51 −
49

95
x31x2 + x62

g(x1, x2) := x52 −
49

95
x32x1 + x61

into
r(y1, y2) := y1 − 1 + y2

s(y1, y2) := 1 +Aya1y
b
2 +Byc1y

d
2

6

For the purpose of this project, systems will not be this difficult, but this
example shows that any binomial can be transformed into the case of the monic
binomial to which our algorithm solves. So, given any system not in the form
of the algorithm input, we would simply add rescaling and a change of variable
to the tasks to be completed before the initiation of the code.

3.2 Real Roots and the Bisection Method

With this monic binomial, we can define the precise precisions or real roots and
positive roots as follows:

Suppose now that d ∈ Z and c ∈ R.

Find the precise conditions on (c, d) under which xd = c has a
positive root.

1. When d = 0, we have that x0 = 1 = c. So, xd = c has a positive root
under (1, 0).

2. When d 6= 0, we have that xd = c⇒ x = c
1
d . For x be positive, c must be

positive. If c is negative we could have a complex or negative root. Note
that we can’t compare complex numbers so we have to exclude them.

3. If c = 0, we have that x must be zero. But this isn’t a positive root.

4. The set S under which xd = c has a positive root is S = {(c, d)/c > 0 and
d 6= 0} ∪ {(1, 0)}

Find precise conditions on (c, d) under which xd = c has a real root.

1. When d = 0, we have that x0 = 1 = c. So, xd = c has a real root under
(1, 0).

2. When d 6= 0 we can consider x = c
1
d and we have three cases: if c > 0, if

c = 0 and if c < 0.

(a) With c > 0, for any nonzero d we have a positive-real root.

(b) With c = 0, x must be zero for any nonzero d and also this it a real
root.

(c) In the third case, c < 0, consider two cases for nonzero d: d is odd or
d is even. When c is negative and d is an even number, xd = c has
a complex root. When c is negative and d is an odd number, xd = c
has a negative-real root.

3. The set S under which xd = c has a real root is S = {(c, d)/c ≥ 0 and
d 6= 0} ∪ {(c, d)/c < 0 and d is an odd number} ∪ {(1, 0)}

7

So with this information, let us consider the monic binomial, Once again, we
will present work and then follow with explanations.

Lemma: xd− c where c > 0, c ∈ R, d ∈ N, and d ≥ 2 is a solution to Smale’s
17th problem.

Consider f(x) := xd − c

1. c = 1 then x = 1 DONE.

2. c > 1 Bisection method
∣∣∣xn − |c| 1d ∣∣∣ < 1

3d
<

3−
√

7

d− 1
|c| 1d Using bisection

method on interval [0, c] Then n = log(c) − log(1
3d) = log(c) − log(3d)

and the number of steps in this bisection process is O(log(c) + log(d))
and we must factor in the complexity of f(xn) = xdn − c which can be
bounded (upper) at O((log(d)2)), so the average complexity for this case
is O((log(d)2))(log(c) + log(d))

3. c < 1 choose interval [0, 1] such that f(0) = −c < 0 and f(1) = 1− c > 0
Therefore, a root exists in the interval according to the IVT. So, using the

bisection method
∣∣∣xn − |c| 1d ∣∣∣ < 3−

√
7

d
|c| < 3−

√
7

d− 1
|c| 1d and the average

complexity for this case is O((log(d)2))(log(d)− log(c))

We therefore show that the average complexity of this case isO((log(d)2))(log(d)±
log(c)). In this result based on this method, our algorithm will run in log-
arithmic time, which actually exceeds the complexity goal (for this part
of the algorithm).

This project focused only on the real roots to systems of binomial equations,
which means that cases of complex roots. The concept of a defined epsilon is very
important for this research because we deal exclusively with root approximation,
not exact solutions. We must therefore tell our bisection method algorithm
what an approximate root is numerically so that it may stay in the bounds of
mathematical accuracy. These bounds (as seen above in the Lemma) follow
from the gamma theorem of Smale [3] which follows:

8

Suppose f : Cn ⇒ Cn is analytic... If |z − ζ| ≤ 3−
√
7

2 × 1
γ(f,z) then z is an

approximate root with true root ζ
Gamma theory:

γ(f, z) = supk≥2

∣∣∣∣f ′(z)−1fk(z)

k!

∣∣∣∣
1

k−1

Then for f(x); = xd − c where d ∈ N and c ∈ C∗

f ′(x) = dxd−1

fk(x) = d(d− 1) . . . (d− (k + 1))xd−k

γ(f, z) =

∣∣∣∣d− 1

2z

∣∣∣∣
So, if ζ is a true root of xd − c, then z satisfies

|z − ζ| ≤ 3−
√

7

d− 1
× |z|

This bound gives us an exact number for ε. Note that this calculation took
place for c ∈ C∗, and the complex numbers contain the real numbers, so this
bound holds for real c. Also in the algorithm, we have c ∈ R+ to ensure real
solutions.

3.3 Matrix Exponentiation and Smith Normal Form

We will now explain the notation xA = c, which was heavily used in this research.
Given any real nxn matrix M=[mij] and x ∈ Rn+, let us define (* denotes
multiplication)

xM := (xM11
1 ...xMn1

n , ..., xM1n
1 ...xMnn

n).

This function has interesting properties that are easy to prove. The first is as
follows:
Show that xMB = (xM)B , for any real nxn matrix B.

[MB]ik =

n∑
l=1

mil ∗ blk (1)

for the jth term of [xMB],

[xMB]j = (x
[MB]1j
1 ∗ x[MB]2j

2 ∗ ...x[MB]nj
n) (2)

= (x
∑n

l=1m1l∗blj
1 ∗ x

∑n
l=1m2l∗blj

2 ∗ ... ∗ x
∑n

l=1mnl∗blj
n)

Then, for the jth term of [xM]B

[xM]Bj = (xM11
1 ∗ xM21

2 ∗ ...xMn1
n)b1j ∗ ... ∗ (xM1n

1 ∗ xM2n
2 ∗ ... ∗ xMnn

n)bnj (3)

9

= (x
M11∗B1j

1 ∗ xM12∗B2j

1 ∗ ... ∗ xM1n∗Bnj

1) ∗ ... ∗ (xMn1∗B1j
n ∗ ...xMnn∗Bnj

n)

= (x
∑n

l=1m1l∗blj
1 ∗ x

∑n
l=1m2l∗blj

2 ∗ ... ∗ x
∑n

l=1mnl∗blj
n)

Therefore xMB = (xM)B Also we can show that this function maps well from

one finite field into the same field, and that matrices with det 6= 0 allow xA to
be inverted in the same field. The proof follows:

(b)Prove that f(x) := xM is invertible (Rn+ to Rn+) ⇐⇒ det M 6= 0
(i). Assume det M 6= 0, then show det M 6= 0 ⇒ f(x) is invertible. For

any real nxn matrix [M] whose det 6= 0, there exists matrix [N], such that
M ∗N = I = N ∗M , namely M−1

Define g(x) such that g(f(x)) = x for f(x) = xM . Then g(x) = xN so that
g(f(x)) = (xM)N = (xMN) by part a = xI

Check that xI = x
For I all entries are zero except Ill where l = 1, 2, 3...n),
Then the first term of xI = (xI111 ∗ x

I12
2 ∗ ... ∗ xI1nn) = (x11 ∗ x02 ∗ ... ∗ x0n) = x1

and the nth term of xI = (xI1n1 ∗x
I2n
2 ∗ ...∗xInn

n = (x01∗x02∗ ...∗x1n) = xn Therefore
xI = x and g(x) = f−1(x) and with the inverse defined, det M 6= 0 ⇒ f(x) is
invertible

(ii). Assume f(x) is invertible, show that the det M 6= 0 ≡ f(x) invertible

⇒ det M 6= 0
Proof by contrapositive: det M = 0 ⇒ f(x) is not invertible ≡ det M = 0 ⇒
f(x) is not injective (injectivity required for inverse)
Since det M = 0, then xM = 0 has nontrivial solutions. Show f(x) is not
injective.
Let α = (α1...αn) be a non-zero vector in the left null space of M. Then αM = 0

And (α1...αn)×

M11 M12 · · · M1n

· · · · · · · · · · · ·
Mn1 · · · · · · Mnn

=

∑n
l=1 αl ×Ml1

· · ·∑n
l=1 αl ×Mln

=

 0
· · ·
0

 Then,

let W =

 1
· · ·
1

 and Y =


2α1

2α2

· · ·
2αn

 which are two distict vectors given [α] is

nontrivial

Then f(Y) = YM =

 2α1×M11 × · · · × 2αn×Mn1

· · ·
2α1 ×M1n × · · · × 2αn ×Mnn

 =

2
∑n

l=1αl ×Ml1

· · ·
2
∑n

l=1αl ×Mln

 =

20

· · ·
20

 =


1
1
· · ·
1

 according to the previous step

The same summation will hold true for any constant c ∈ Z, and since W con-

10

tained only 1 values, it also yields


1
1
· · ·
1

.

Therefore f(W) = f(Y), but W 6= Y . Therfore f(x) is not injective
Since f(x) is not injective, det M = 0 ⇒ f(x) is not injective ≡ f(x) is
invertible⇒det M 6= 0
Conclusion: f(x) := xM is invertible (Rn+ to Rn+) ⇐⇒ det M 6= 0

The Smith Normal Form of an integer matrix is given in form UAV =
S where S is a positive, diagonal matrix. Note: we only work with square
systems that produce n×n matrices. In 1979, Kannan and Bachem [1] provided
information to supplement Smith in his work on diagonal matrix by providing
and algorithm to quickly calculate the SNF. The paper is cited, and we direct
the reader to this for more information on integer matrix utilities and their
usefulness in applied mathematics. Now we will briefly give an example of how
the Smith Normal Form was utilized in our example with a small 2× 2 matrix
example. The example also shows how the concept of a monomial change of
variable (yU = x and ỹU = x̃) is used in our algorithm.

Given
x21x

4
2 = 5

x61x
8
2 = 9

UAV = S(
−1 1
2 −1

)(
2 6
4 8

)(
1 −1
0 1

)
=

(
2 0
0 4

)
(xA = c)⇒ (yU = x)⇒ (yUA = c)⇒ (yUAV = yS = cV)

Then
(y1)2 = 5

(y2)4 =
9

5

These Univariate binomials will form the vector ỹ = (
√

5, 4

√
9
5). This would be

solved in our algorithm with error ε by f = y21 − 5 and g = y42 − 9
5 . Then the

vector ỹ is raised to matrix U to produce approximate root vector x̃ which will
be shown to fall in the bound for the approximate root definition. Therefore we
can summarize this process as:

SNF ⇒ Univariate binomials ⇒ Previous algorithm ⇒ ỹ ⇒ ỹU = x̃.

11

3.4 Chemical Reaction Networks

In 2011, Millán et. al provided the paper “Chemical Reaction Systems With
Toric Steady States” [2], which provide sufficient conditions for a Chemical
Reaction Network (CRN) to have a system of ODE’s expressible as a binomial
system. A Chemical Reaction Network (CRN) is an organized digraph
of chemical reactions. Under the assumption of mass-action kinetics, chemical
species react at a rate proportional to the product of their concentrations, where
the proportionality constant is the rate constant κ. In chemistry, a steady
state is a situation in which all state variables are constant in spite of ongoing
processes that strive to change them. It is called a toric steady state if
the corresponding system of ODE’s can be expressed as a binomial system
and then solved.We know how to scale any binomial system into a system of
monic binomials, so we can apply our algorithm to real bio-models with defined
parameters. Here is an example of how a CRN is expressed as differential
equations and made into a binomial system:

Reaction (Triangle Network): Let s = 2 and m = 3. Then 2A = x21,
2B = x22, and A+B = x1x2

dx1
dt

= −dx2
dt

= (−2κ12 − κ13)x21 + (2κ21 + κ23)x22 + (κ31 − κ32)x1x2

As only the coefficients of x1x2 can be zero, this system has toric steady states
iff κ31 = κ32.

As previously stated, we have precise conditions under which a CRN can
be expressed as a binomial system. In the paper [2], these are conditions 3.1,
3.4, and 3.6. They are all essentially linear algebra conditions. Unfortunately
in this small research period, there are no finite results with the bio-models
we found in an on-line database. We are very close, using Computer Algebra
System Maple. These linear algebra conditions apply to a 27 × 27 matrix for
our bio-model, so calculations with Gaussian elimination for the right null-space
will only take a few more days of research. If anyone is interested in the Maple
file, the researcher will gladly provide it.

12

4 Future Work

Therefore, we can:

1. Find biomodels with defined paramaters (κ denotes reaction constants)

2. Convert these models’ associated dynamical systems into binomial systems
based on the work of Millán et. al

3. Use binomial system as input for developed binomial system algorithm

The solutions to such systems are of high importance to Computational & Sys-
tems Biologists. The head undergraduate researcher for this project would enjoy
the opportunity to further pursue results with these mathematical biologists.
Also, we find it interesting to find applications of binomial system solving in
areas such as Business Statistics and Economics. This project is very much
open to many academic disciplines, and the undergraduate researcher has fu-
ture aspirations to serve as a bridge between mathematicians and experts in
other fields.

13

5 Algorithm

Below is the Sage code that was written for this project to solve binomial sys-
tems. This particular code is for a (2 × 2) system. For larger systems, c has
as many points as columns in A More general code can be received from the
researcher for anyone interested:

def vector_exp(v):

m=len(v)

R=PolynomialRing(RR,m,"x")

x=R.gens()

comp=prod(x[i]^v[i] for i in range(m))

return comp

def matrix_exp(x,M):

n = M.ncols()

M = transpose(M)

result = [vector_exp(M[i]) for i in range(n)]

return result

def yvector_exp(v):

m=len(v)

y=var(’y’)

R=PolynomialRing(RR,m,"y")

y=R.gens()

comp=prod(y[i]^v[i] for i in range(m))

return comp

def ymatrix_exp(y,M):

n = M.ncols()

M = transpose(M)

result = [yvector_exp(M[i]) for i in range(n)]

return result

def bisect_method(f, a, b, eps):

try:

f = f._fast_float_(f.variables()[0])

except AttributeError:

pass

intervals = [(a,b)]

two = float(2); eps = float(eps)

while True:

c = (a+b)/two

fa = f(a); fb = f(b); fc = f(c)

14

if abs(fc) < eps: return c, intervals

if fa*fc < 0:

a, b = a, c

elif fc*fb < 0:

a, b = c, b

else:

raise ValueError, "f must have a sign change in the interval (%s,%s)"%(a,b)

intervals.append((a,b))

def _(f = cos(x) - x, a = float(0), b = float(1), eps=(-3,(-16..-1))):

eps = 10^eps

print "eps = %s"%float(eps)

try:

time c, intervals = bisect_method(f, a, b, eps)

except ValueError:

print "f must have opposite sign at the endpoints of the interval"

show(plot(f, a, b, color=’red’), xmin=a, xmax=b)

else:

print "root =", c

print "f(c) = %r"%f(c)

print "iterations =", len(intervals)

P = plot(f, a, b, color=’red’)

h = (P.ymax() - P.ymin())/ (1.5*len(intervals))

L = sum(line([(c,h*i), (d,h*i)]) for i, (c,d) in enumerate(intervals))

L += sum(line([(c,h*i-h/4), (c,h*i+h/4)]) for i, (c,d) in enumerate(intervals))

L += sum(line([(d,h*i-h/4), (d,h*i+h/4)]) for i, (c,d) in enumerate(intervals))

show(P + L, xmin=a, xmax=b)

def single_binomial(d, c):

c = float(c); d = int(d)

x = var(’x’)

f = x^d-c

eps = .0001

if c > 1:

return bisect_method(f, 0, c, eps)

elif c < 1:

return bisect_method(f, 0, 1, eps)

elif c == 1:

raise ValueError, "x is equal to one"

def S_diag (A):

15

S, U, V = A.smith_form()

return S

def U_diag (A):

S, U, V = A.smith_form()

return U

def V_diag (A):

S, U, V = A.smith_form()

return V

def SNF_diag(A):

S= S_diag(A)

y = var(’y’)

r = A.ncols()

return ymatrix_exp(y,S)

def binomial_system(A,c1, c2):

c1 = int(c1)

c2 = int(c2)

S = S_diag (A)

B = single_binomial(S[0][0], c1)

C= single_binomial(S[1][1], c2)

return B, C

16

6 References and Acknowledgments

References

[1] Kannan & Bachem. Polynomial Algorithms for Computing the Smith and
Hermite Normal Forms of an Integer Matrix. Society for Industrial and Applied
Mathematics, 1979.

[2] Millán, Dickenstein, Shiu, & Conradi Chemical Reaction Systems With
Toric Steady States arXiv:1102.1590 [math.DS], 2011.

[3] Smale, Steve Newton’s Method Estimates from Data at One Point The
Merging of Disciplines: New Directions in Pure, Applied, and Computational
Mathematics, 1986.

Acknowledgements

Kaitlyn Phillipson, Lead Mentor
Dr. J. Maurice Rojas, Lead Professor
The National Science Foundation (NSF)
Texas A&M University Peers, Faculty, and Friends of the Texas A&M Mathe-
matics REU 2014

I would like to thank all those who have supported me in my research,
especially those mentioned above. This research experience was stimulating

and full of new experiences. My future as a researcher and business
professional will always be impacted by the experience I shared with the 13

other students in this program.

17

