THE CHOWLA-SELBERG FORMULA FOR QUARTIC ABELIAN CM FIELDS

ROBERT CASS

ABSTRACT. We provide explicit analogues of the Chowla-Selberg formula for quartic abelian CM fields. This
consists of two main parts. First, we implement an algorithm to compute the CM points at which we will
evaluate a certain Hilbert modular function. Second, we exhibit families of quartic fields for which we can
determine the precise form of the analogue of the product of gamma values.

1. INTRODUCTION AND STATEMENT OF RESULTS

The Chowla-Selberg formula [CSb], [CSa] relates the values of the Dedekind eta function n(z) at certain
CM points to values of Euler’s gamma function I'(s) at rational numbers. The particular CM points appearing
in the Chowla-Selberg formula are associated to imaginary quadratic fields. In [BSM], Barquero-Sanchez
and Masri generalize the Chowla-Selberg formula to abelian CM fields. Their formula relates the values
of a Hilbert modular function at CM points associated to an abelian CM field to values of both I'(s) and
an analogous function I'y: RT™ — R at rational numbers. Our goal is to provide explicit evaluations of the
Chowla-Selberg formula for quartic abelian CM fields. This consists of two parts: (1) calculating the CM
points, and (2) identifying families of field extensions for which the side of the formula involving T'(s) and
Iy(x) can be computed in general. We also provide several examples of our formulas for specific quartic
fields.

We begin by explaining the Chowla-Selberg formula for abelian CM fields. Closely following the intro-
duction in [BSM], let F//Q be a totally real field of degree n with complex embeddings 74, ...,7,. Let Op
be the ring of integers, O} be the group of units, dp be the absolute value of the discriminant, dp be the
different, and

Gis) = dif*n " (5/2)" Cr(s)
be the (completed) Dedekind zeta function. Let
z=x+iy=(21,...,2,) € H"

where H is the complex upper half-plane. The Hilbert modular group SLs(OF) acts componentwise on H"
by linear fractional transformations. Define the real analytic function ¢: H® — RT by

(—1)N .
(P(Z) = exp M + E Ul('“’@F) e27r1T(u,z)
Rp Rp |Npjo(udr) - N 12
peo-tyox Br [Nrjq(udr) - Npjg(w)]
p#0

where N(y) = []’_, y; is the product of the imaginary parts of the components of z € H", Rp is the residue
of (5(s) at s =0,
o1(udr) = > Nrsg(b),
b|puOr

and
n n

T(p,2) = ZTj(u)l‘j +i, |75 (1) |y

The function ¢(z) transforms like a weight one Hilbert modular form ([BSM], Lemma 2.1), and in the case
F = Q we have ¢(z) = |n(2)|>. Now define the SLy(Op)-invariant function

H(z) = VN(y)e(2).
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Let E be a CM extension of F' with class number hg, and let & = (01,...,0,) be a CM type for E.
Assume that F' has narrow class number 1. To define the CM points at which we will evaluate H(z), note
that given an ideal class C' € CL(E), there exists a fractional ideal a € C~! such that

a= OFO[+OF57
where o, 8 € E* and

B

a= € EXNH"={z€ E* : ®(2) = (01(2),...,0n(z)) € H"}.

z

Then z, is a CM point corresponding to the inverse class [a] = C~1. We will use the term CM point to refer
to both z, and its image ®(z,) under the CM type ®, and it will be clear which point we mean either from
context or notation. Let

CM(E,®,0F) = {2, : [a] € CL(E)}
be a set of CM points of type (E,®). This is a CM 0-cycle on the Hilbert modular variety SLo(Op)\H™".
In Section 4 we give more background on CM points and an algorithm to compute them when FE is quartic
abelian.

Let L C Q((n) be an abelian field, where (,, = €2™"/™ is a primitive m-th root of unity. Let Hy be
the subgroup of G = Gal(Q((,,)/Q) which fixes L. Recall that G = (Z/mZ)*, where we identify the map
ot € G determined by o4((,) = ¢, with the class [t] € (Z/mZ)*. We can then define the group of Dirichlet
characters associated to L by

X ={x € (@Z/mZ)* : X |u,=1}.
Since the CM field E is abelian over Q, by the Kronecker-Weber theorem E embeds into some Q((,,). Hence
Hg < Hp, and so Xg < Xg. For our purposes, the choice of cyclotomic field containing E does not matter.
Note that we will frequently think of a character of a group (Z/NZ)* as a Dirichlet character without
explicitly drawing the distinction.

Given a primitive Dirichlet character x of conductor ¢,, let L(x,s) be the Dirichlet L-function and let
7(x) be the Gauss sum

() =D X(K)CE e = PTx
k=1

The gamma values in the Chowla-Selberg formula arise from Lerch’s evaluation of L’(y, 1) for x an odd,
primitive Dirichlet character. For their generalization to abelian CM fields, Barquero-Sanchez and Masri
also had to evaluate L’(x,1) for x an even, primitive Dirichlet character. Deninger [Den] showed how to
evaluate L’(x, 1) in terms of a certain function I';: RT — R. To describe I'y, note that as a consequence of
the Bohr-Mollerup theorem, the function log(I'(x)/v/27) is the unique function f: R* — R such that

flz+1) = f(x) = log(x),

f(0) = ¢’(0) = —log V2w, and f(z) is convex on R*. Deninger proved that the function —¢”(0,z) is the
unique function g: RT™ — R such that

gz +1) - g(x) = log*(2),

g(1) = —¢"(0), and g(x) is convex on (e, o). Here {(s) is the Riemann zeta function and
— 1
$,x) = ———, x>0, Re(s)>1
o) =3 (e (5

is the Hurwitz zeta function. Deninger also proved that

—¢"(0,2) = lim (C”(O) + zlog®(n) — log?(z) — 3 (log?(z 4 k) — log2(k))> .
k

n— o0
=1

Define
[y (x) = exp(—¢"(0,2)),

which by our above discussion can be viewed as analogous to I'(x)/v2m. We can now state the version of
the Chowla-Selberg formula for abelian CM fields.
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Theorem 1.1 ([BSM], Theorem 1.1). Let F/Q be a totally real field of degree n with narrow class number
1. Let E/F be a CM extension with E/Q abelian. Let ® be a CM type for E and

CM(E,®,0p) ={zq : [a] € CL(E)}
be a set of CM points of type (E,®). Then

50 BT
(1) Il HE@G)) =aEFn) ] Hr( ) < 1] HF2( ) :
[a]eCL(E) XEXEe\XF k=1 XE;lek 1
X

where
hg

d 2
Cl(E,F,n) = (M/@) .

Note that while Xz and Xg depend a priori on the choice of m in the embedding E C Q((,,), for the
purposes of Theorem 1.1 we take the products on the right side of (1) over the primitive characters x that
induce the characters in X and X, with each primitive character appearing only once. This is the reason
that (1) is independent of the choice of m in the embedding E C Q((,,). Equivalently, X and Xg may be
taken to be the primitive Dirichlet characters associated to the Dirichlet L-functions in the factorizations of
the Dedekind zeta functions of F' and F, respectively.

Our main theoretical results are explicit evaluations of the right side of (1) in terms of standard arith-
metical data associated to E and its subfields for a family of biquadratic CM fields and a family of cyclic
quartic CM fields. We also describe and implement an algorithm to enumerate the CM points appearing on
the left side of (1) for quartic abelian CM fields.

To state our results, for any squarefree integer d let K = Q(\/&) Let A be the discriminant of K, hy be
the class number, wg = #0Oj; be the number of units (for d < 0), €4 be a fundamental unit (for d > 0), and

xa(k) = { —
a family of biquadratic CM fields.

Theorem 1.2. Let p =1 (mod 4) and ¢ = 3 (mod 4) be primes. Let ' = Q(\/p), £ = Q(\/p,/—q), and
assume that F' has narrow class number 1. Then

be the Kronecker symbol associated to K. Then we have the following evaluation of (1) for

hpx—qg(Rw_g hpX—pg(R)w_pq

o I e () T ) () ()

[a]eCL(E) k=1 k=1

For a Dirichlet character y, let Bi(x) be the first generalized Bernoulli number attached to x. Our
analogous result for a family of cyclic quartic CM fields is as follows.

Theorem 1.3. Let p=1 (mod 4) be a prime, and let B,C > 0 be integers such that p = B>+ C? and B = 2
(mod 4). Let F = Q(\/p) and E = Q ( — (p + Bﬁ)), which is a cyclic quartic CM field with totally real

quadratic subfield F. If F' has narrow class number 1, then

L ~hs Re 5t P K\ TherT
(3) Il H@Gz) =alE F2) H ( > 11T <p) .
k=1 k=1

[a]eCL(E)

Here x is any choice of character of (Z/pZ)* that sends a primitive root modulo p to a primitive fourth root
of unity.

k k
Remark 1.4. The characters x,(k) = (p) and x_4(k) = (q) appearing in Theorem 1.2 are Legendre

symbols, and x_,q is the character of (Z/pgZ)* equal to the product of the characters induced by x, and
X—q- Because the Dirichlet character x in Theorem 1.3 takes values in {0,+1,+i}, the exponents on the
right side of (3) are rational except for the regulator log(e,). Explicitly,

P

Z Y(k+1).

k
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This paper is organized as follows. In Section 2, we calculuate the groups of characters appearing in the
right side of Theorem 1.1 for the families of fields in Theorems 1.2 and 1.3. We also include a discussion of
how to compute the group of characters for any cyclic quartic CM field. In Section 3, we prove Theorems
1.2 and 1.3. In Section 4, we review some relevant facts about CM 0-cycles on a Hilbert modular variety,
and we give a modified version of an algorithm of Streng [Str10] to compute the CM points for a quartic
abelian CM field. Finally, in Section 5 we give several examples of our main theorems and some tables of
CM points for fields of small class number computed using the algorithm in Section 4. In the appendix we
give our code in Sage [ST13] for this algorithm.

Acknowledgments. This work was completed at the 2014 Research Experience for Undergraduates (REU)
in Mathematics at Texas A&M University, which was funded by the NSF. The author would like to thank
Riad Masri for his guidance and support, and Adrian Barquero-Sanchez for helpful conversations.

2. GROUPS OF CHARACTERS FOR QUARTIC ABELIAN CM FIELDS

In this section we compute the groups of characters necessary to obtain Theorems 1.2 and 1.3. We also
describe a more general method to compute the group of characters appearing on the right side of (1) for
any cyclic quartic CM field.

First, we recall a couple of classical results about quadratic Gauss sums. For an odd prime p and integer
k not divisible by p, let

p—1
o) =3 (£) eriern

p
z=1
denote the quadratic Gauss sum. Then we have the following:
k
(4) g(k,p) = <p) 9(1,p), ([IR], Prop. 6.3.1)
_J P, ifp=1 (mod 4),
(5) g(1,p) = { V=P, ifp=3 (mod 4), (IR], Ch. 6, Theorem 1)

where the square roots have positive real part. We can define a Gauss sum more generally by replacing
the Legendre symbol with any character of (Z/pZ)*, and then the analogue of (4) still holds. In ([BSM],
Theorem 1.4), the authors give a more general version of Theorem 1.2 for multiquadratic extensions. Their
computation of the group of characters for a multiquadratic extension relies on a certain Galois-theoretic
property of the Kronecker symbol, which is more or less equivalent to the fact that an analogue of (5) holds
when p is replaced by a squarefree integer (see [KKS], §5.2(d)-5.2(e)). In keeping with the concrete spirit of
this paper, we give a direct computation of the group of characters for the family of biquadratic extensions
in Theorem 1.2 using only (4)-(5).

Starting with the biquadratic case, let p = 1 (mod 4) and ¢ = 3 (mod 4) be primes. Let F' = Q(\/p),
E = Q(\/p,v/—q), and assume that F' has narrow class number 1. Let m = pg. By (5) it is clear that
E C Q(¢n) where ¢, = €2™/™. Let G = Gal(Q((n)/Q), and let Hp and Hp denote the subgroups that fix
F and F, respectively. We would like to determine

Xr={x:Z/mZ)* - C* : x|gp=1}, and Xgp={x:(Z/mZ)* - C* : x |gy=1}.
Recall that we identify the automorphism o; € G determined by (,, — (!, with the element [t] € (Z/mZ)*.

Lemma 2.1. The automorphism o, € G fizes F' = Q(/p) if and only if t is a quadratic residue modulo p.
Furthermore, oy fivzes E = Q(\/p,/—q) if and only if t is a quadratic residue modulo p and t is a quadratic
residue modulo q.

Proof. This is a straightforward application of quadratic Gauss sums. Since (, = (%, then 04((,) = C;.
Hence by (4) and (5),

oi(v/p) = 01(9(1,p)) = g(t,p) = <;) V/P-

Thus oy fixes F if and only ¢ is a quadratic residue modulo p. The same argument shows

== (£)v=a

q
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and the result follows. O

Now to determine X g and X g, note that
(Z/mZ)* = (Z/pL)* x (Z]qL)*

We can choose this isomorphism so that we identify a pair of characters x, € (Z//zﬁ)>< and x4 € (Z//\qZ)X
with the product x = x; - x4 of the characters of (Z/mZ)* that x, and x, induce.

Suppose X = Xp - Xq € Xp. By Lemma 2.1, x(a) =1 if (a) = 1. Moreover, for any integer a such that
p
(a) = 1, there exists a positive integer b < pq such that b = a (mod p) and b =1 (mod ¢). Since
p
Xp(@) = Xxp(0)xq(b) = x(b) = 1,

we see that x, is 1 on quadratic residues modulo p. Hence x, = 1 or x,(k) = ) Similarly, for any

S~
@\w

integer a such that ged(a,q) = 1, there exists a positive integer b < pg such that b = 1 (mod p) and b = a
(mod ¢). Then

Xq(a) = Xp(b)xq(b) = Xx(b) = 1,

so xq = 1. Hence we have shown that X is contained in the two element set consisting of trivial character

k
and the character induced by <> . It is straightforward to verify that this containment is in fact an equality.
p
Proceeding similarly to compute Xg, suppose x = xp - Xq € Xg. By Lemma 2.1, x(a) = 1 if (a) =1
p

a
and () = 1. By the exact same reasoning as in the first part of the previous paragraph, we deduce that
q

k k
Xp =1or xp(k) = () By repeating this argument one more time, we find that x, = 1 or x4(k) = <>

p q
Hence X is contained in the four element set consisting of the characters x = x; - x4 Where x, and x, are

trivial or Legendre symbols. Again, a straightforward calculation shows that this containment is an equality.
We have thus shown the following:

Lemma 2.2. Let p = 1 (mod 4) and ¢ = 3 (mod 4) be primes. Let F' = Q(\/p),E = Q(/p,v/—q), and
assume that F' has narrow class number 1. Then Xp and Xg may be taken to be subsets of (Z/pqZ)*, and

Xr={xi.x2}, Xe={x1,.x2 x3 x4}

wmn = () w0 (). 0= (2)-()

In the equations above, we mean the characters of (Z/pgZ)* induced by the Legendre symbols.

Moving on to the family of cyclic quartic CM fields in Theorem 1.3, we start with a general description
of cyclic quartic fields following the introduction in [SW] and then specialize to our case. Let E be a cyclic
quartic extension of Q. Then there exist unique integers A, B, C, D such that

E:Q( A(D+B\/5)>

where

where

(6) A is squarefree and odd,

(7) D = B? + C? is squarefree and B,C > 0,
(8) ged(A,D) = 1.

Moreover, each choice of integers A, B, C, D satisfying these conditions defines a cyclic quartic field with
primitive element \/ A(D + Bv/D). The unique quadratic subfield is always Q(v/D).
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It is now clear that the cyclic CM fields of degree 4 are precisely those cyclic extensions with A < 0.
Indeed, if A < 0 then E is a totally imaginary quadratic extension of the totally real field Q(v/D), and if
A >0 then A(D + BV/D) has a real embedding. Consider the following three cases:

Case I: D=2 (mod4),
(9) Case2: D=1 (mod4), B=1 (mod?2),
Case3: D=1 (mod4), B=0 (mod?2).

We further divide case 3 into the two subcases:

(a) A+ B=3 (mod4),
(b) A+ B=1 (mod4),

(10)

3, in cases 1 and 2,
(11) I=UE)=1 2, in case 3(a),
0, in case 3(b).

We need to determine a cyclotomic field containing a given cyclic quartic CM field. The smallest such
cyclotomic field possible is as follows.

Theorem 2.3 ([SW]). Let E = Q (\/A(D +B@)) be a cyclic quartic extension of Q where A, B, C,

D are integers that satisfy (6) - (8). Letl be as in (11), and set m = 2'|A|D. Then m is the least positive
integer such that E C Q((m)-

From this result, we can explicitly determine Xp and Xpg for the family of cyclic quartic CM fields in
Theorem 1.3 without doing any computations in F' or E.

Lemma 2.4. Let E be a cyclic quartic CM field of the form E = Q ( —(p+ B\/]S)) where p =1 (mod 4)
is prime and p = B? + C? for some integers B,C > 0 with B =2 (mod 4). Let a be a primitive root modulo
p. Then Xg and Xp may be taken as subsets of (Z/pZ)*. More precisely,

XE = {X15X27X37Y3}7 and XF = {X17X2}

where L
x1=1, xaok)= (p) , X3 is the character of (Z/pZ)* such that x3(a) = i.

Proof. By Theorem 2.3, the field E embeds into Q(¢,) (this is case 3(b) asin (11)). Let G = Gal(Q(({,)/Q) =
(Z/pZ)*. Since this group is cyclic, it is clear that there is a unique subgroup such that the corresponding
quotient group is of order 4, namely, the subgroup (a*). Hence Hg = (a*), as G/Hg = Gal(E/Q). Similarly
since Hr is a subgroup of G of index 2, then Hr = (a? ).

Now let x be a character of (Z/pZ)*. In order for x to be identically 1 on {a?), it is not hard to see that
x must be one of the four characters x1, x2x3,Xs3- Clearly each of these characters is identically 1 on Hg,
so this proves that Xz = {x1, X2, X3, X3} If x is identically 1 on Hr = (a?), then Y is either x; or x2, and
both of these possibilities do occur so Xp = {x1, x2} a

Remark 2.5. For every prime p =1 (mod 4), the field Q(¢,) contains a unique cyclic subfield E of order
4. Since p is prime, the field Q({,) contains no other cyclotomic subfields. Hence Q((,) is the smallest
cyclotomic field containing E. By Lemma 2.3, E' must be generated over Q by 4/A (p—i—B\/]S) where
A =41 and p = B? + C? for integers B,C > 0 with B=0 (mod 2) and A+ B=1 (mod 4). If A = —1
then E is a CM field, otherwise E is not a CM field. The congruence A+ B =1 (mod 4) shows that A is
easily obtained by knowing B. Additionally, B can be obtained from p since the decomposition p = B2 + C?
is unique up to order (assuming B,C > 0) and since precisely one of B, C' is even in such a decomposition.
Hence we have a simple congruence relation that determines when the cyclic quartic subfield of Q((,) is a
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CM field. Our family of fields in Theorem 1.3 is precisely the family of cyclic quartic CM fields with narrow
class number 1 whose minimal cyclotomic embeddings are in the fields Q(¢,). It is not known to the author
whether this family of cyclic quartic CM fields is infinite (with or without the condition on the narrow class
number). Computer experimentation suggests that when the fields Q({,) with p = 1 (mod 4) are ordered
by the size of p, on average half of these fields contain a cyclic quartic CM field.

We conclude this section by describing a general method for computing X and Xg for any cyclic quartic
CM field, using [SW] as our primary reference. Recall the general setup. A cyclic quartic CM field E can be

written uniquely as £ = Q <\/A(D + B\/ﬁ)) where A, B,C, D are integers satisfying (6) - (8) and A < 0.

We classify E into one of the four cases according to (9)-(10), and we define [ as in (11). By Theorem 2.3, the
field E' embeds into Q((,,) where m = 2!|A|D. Hence we can view Hr and Hg as subgroups of (Z/mZ)*.

Since D = (£B)?+ (£C)? and E=Q (\/A(D + B\/E))7 we may change the signs of B and C' without
changing the field E. After replacing B by —B and C' by —C' if necessary, the number x € Z[i] defined by

Case 1: ﬁ:%(B—FC')—&—i%(C’—B),
(12) Case 2: k= B+iC,
Case 3: k=C+1iDB,
satisfies
k=1 (mod (141)3)

in the ring Z[i], that is, x is primary. There exists a system of congruence relations on B, C, D that determine
when to replace B by —B and C by —C explicitly described in [SW]. See [IR] for the definition of primary
and other facts related to biquadratic reciprocity, which we will use below. We have

1D7 in case 1,
(13) N(k)=kE=( 2
D, in cases 2 and 3.
where N (k) is the usual norm in Z[i]. Since N (k) is squarefree and odd, and & is prime, then & is the
(possibly empty) product 7 - - - 75 of primary Gaussian primes whose norms py, ..., ps are distinct rational
primes each congruent to 1 modulo 4. The empty product is understood to be 1, and this only occurs when
D =2, in which case B = C = k = 1. We denote by S;(7;) the Gauss sum

p;—1

Se(mj) =Y X, ()€™ /P
x=1
Here X, (x) is the biquadratic residue character of z (mod 7;), defined by

Xrj (x) =i/
where i € Z[i] is the imaginary unit and 0 < j < 3 is such that

pj—1

z=3 =i’ (mod ;).
Note that
(14) Se(mj) = Xy (£)S1(715).
Set

(15) S =8(r) =[] S1(m)-
j=1

For a primitive element for E, we have the following lemma.
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Lemma 2.6 ([SW], Lemma 2.2). Let E = Q < A(D + B\/ﬁ)) be a cyclic quartic extension of Q where

A, B,C, D are integers that satisfy (6) - (8). The minimal polynomial of \/ A(D + B\V/D) is X* —2ADX? +
A%2C?D, whose roots are £1/ A(D &+ Bv/D). In terms of S = S(k), the roots of this minimal polynomial are

Case 1:  +VA(wS +w9), +ivVA(wS — wS),
Case 2:  +VA(S+95)/V?2, +ivVA(S - S)/V2,
Case 3:  +3VA((1+0)S +(1—1)S), +ivVA((1—19)S+ (1+4)S5),

where w = e27/16,

Let G = Gal((,,/Q), and let Hg and Hy be the subgroups that fix F and F = Q(v/D), respectively. To
compute Hg and Hp as subgroups of (Z/mZ)*, we need to understand how an element oy € G defined by
o(Cn) = ¢, acts on /D and a primitive element for E. It is sufficient to take m = 23|A|D, perform the
necessary calculations, and then restrict to the smallest m possible given by Theorem 2.3.

To determine o, (v/D) if D is odd, we can write v/D as a product of Gauss sums and a unit in Z by applying
(5) to each of the prime factors of D. Indeed, since D = 1 (mod 4), the prime factors of D congruent to 3
modulo 4 come in pairs, so this product of Gauss sums will be +£v/D. By (4), we can determine how o; acts

) . t
on each of these factors. If D is even, we add the factor /2 = e™/4 — ¢7™/4_ which is mapped to (2> V2

by o;. Now in either case, we have all the information we need to compute Hp.

To compute Hg, we can use the equations for the generators of E' as in Lemma 2.6. By the previous
paragraph and (14), we just need to explain how o; acts on i, w, @, G, and VA. As 4 | m, we know how o,
acts on i = (24P If 16 | m it is straightforward to determine o¢(w). Otherwise, let M = 2m and consider
the automorphism 73 in Gal(Q(¢ar)/Q) such that 7:(Car) = ¢4;. As 16 | M, we can determine how o acts on
w. Since oy is the restriction of 74 to Q((,,), we can then determine how o, acts on w. To deal with @, note
that in a CM field the complex conjugation automorphism commutes with all other automorphisms. Thus
0+(@) = o(w). This also impies that o;(S) = 04(S). Finally, to determine o;(v/A) we can use the method
as described in the previous paragraph to compute o;(v/D) (recall that A is odd and squarefree). Now in
all three cases we have enough information to determine if o; fixes a primitive element for F.

We have now described how to determine whether or not a given automorphism o; € G fixes F or fixes
E, so we can compute Hr and Hp explicitly as subgroups of (Z/mZ)*. The determination of X and Xp
is now a straightforward computational task, as it is not hard to enumerate all m characters of (Z/mZ)*
and check which characters restrict to the identity on Hp or on Hp. We sketch the details of the calculation
of Xg and X for a cyclic field in Example 5.5.

3. PROOF OF MAIN RESULTS

We are now in a position to evaluate the right side of (1) for the families of quartic CM fields under
consideration.

Proof of Theorem 1.2. We have

Xp={x1,x2} and Xg={x1,X2, X3, X4}

where x1, X2, X3, x4 are as in Lemma 2.1. Recall that for the purposes of evaluating the right side of (1),
we view all characters x as primitive characters of (Z/c,Z)*, where ¢, is the conductor of x. Clearly xo
has conductor p, x3 has conductor ¢, and x4 has conductor pg. Straightforward calculations show that xo is
the Kronecker symbol associated Q(,/p), x3 is the Kronecker symbol associated to Q(y/—¢), and x4 is the
Kronecker symbol associated to Q(/—pg). The residue of the Dedekind zeta function of Q(\/p) at s =1 is
equal to L(xa2, 1), so by the class number formula

2h, loge
16 L(xz,1) = =2 =2,
(16) (x2,1) 7



THE CHOWLA-SELBERG FORMULA FOR QUARTIC ABELIAN CM FIELDS 9

Recall that 7(x2) = \/p by (5), and that h, = 1 by the narrow class number one assumption. To evaluate
L(xs3,0), let (5 (s) be the completed Dedekind zeta function of the quadratic field Q(v/—¢). Combining the
class number formula with the functional equation for (j.(s) gives

2h_
L(X?n 0) = . .
W—q
Similarly
2h_
L(X4,0) = qu
—pq

Since p = 1 (mod 4) and —¢ = 1 (mod 4), then dp = p and d_; = ¢, where d_, is the absolute value
of the discriminant of Q(y/—¢). Furthermore, as F is the compositum of the fields F' and Q(y/—¢q) which
have relatively prime discriminants, we have dp = (d,d_,)? = p*¢® ([Lan], Ch. 3, Prop. 17). It is now
straightforward to compute the right side of (1) in terms of the data given. O

Proof of Theorem 1.3. In the notation of Lemma 2.4,

XE = {XlaX2aX3aY3} and XF = {XluXQ}‘
Hence in this case all characters appearing on the right side of (1) have conductor p. As in the proof of
Theorem 1.2, the character x. is the Kronecker symbol associated to the field Q(,/p), so L(x2,1) is given
by (16). We do not have as refined a result as the class number formula for quadratic fields with which to

evaluate the L-functions L(xs, s) and L(x3,s) at s = 0, but we can write these values in terms of generalized
Bernoulli numbers ([IR], Prop. 16.6.2). We have

L(xs,0) = —=Bi(xs),
where Bj(xs) is the first generalized Bernoulli number attached to xs. Similarly, L(¥5,0) = —Bi1(X3) =
—Bi(x3). We can now evaluate the right side of (1) and arrive at Theorem 1.3. O

4. ALGORITHM TO COMPUTE CM POINTS

Before presenting an algorithm to compute the CM points appearing in (1), we give more detailed in-
formation on CM O-cycles on a Hilbert modular variety, essentially following the exposition of Bruinier and
Yang ([BY], Sec. 3) and specializing to the case F' has narrow class number 1. Let F' be a totally real
number field of degree n with real embeddings 71,...,7, and assume that F' has narrow class number 1.
Then SL2(OF) acts on H” via

Mz=(n(M)z1,...,mn(M)zy,).
The quotient space X (Op) = SLa(Op)\H" is the open Hilbert modular variety associated to Op. The
variety X (Op) parametrizes isomorphism classes of principally polarized abelian varieties (A,¢) with real
multiplication ¢ : Op < End(A).

Let E be a totally imaginary quadratic extension of F and ® = (o4,...,0,) be a CM type for E. A point
z=(A4,1) € X(Op) is a CM point of type (E,®) if one of the following equivalent conditions holds:

(1) As a point z € H", there is a point 7 € E such that
(1) = (01(7),...,0n(7)) = 2
and such that
AT = OF + OFT
is a fractional ideal of E.
(2) There exists a pair (4,:) that is a CM abelian variety of type (E,®) with complex multiplication
i’ : O < End(A) such that i =i’ |o,,.

By [BY, Lemma 3.2] and the narrow class number 1 assumption, there is a bijection between CL(E) and
the CM points of type (E,®) defined as follows: given an ideal class C' € CL(E), there exists a fractional
ideal a € C~! and «a, 3 € E* such that we have the decomposition
(17) a=0ra+ Opp

and such that z = /o € EXNH" = {z € E* : ®(z) € H"}. Then z represents a CM point in X (Op) in the
sense that C™ /A, is a principally polarized abelian variety of type (E, ®) with complex multiplication by Og,
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where A, = Of + Opz. Conversely, every principally polarized abelian variety of type (E, ®) with complex
multiplication by Op arises from a decomposition as in (17) for some a in a unique fractional ideal class in
CL(FE). We denote the CM 0-cycle consisting of the set of CM points of type (E,®) by CM(E, ®,OF) and
identify it with the set

{ze € E* NH" : [a] € CL(E)}
under the bijection we just described.

As we noted earlier, the CM points CM(E,®,Or) C X(Op) parametrize isomorphism classes of princi-
pally polarized abelian varieties (A, ¢) with complex multiplication ¢ : O < End(A). In his thesis, Streng
[Str10] gives a couple of algorithms for enumerating principally polarized abelian varieties admitting complex
multiplication by a CM field. In particular, ([Str10], Algorithm 2.5, Appendix 2) produces a list of elements
z; € E* such that for every fractional ideal class C' € CL(E) and any choice of CM type @, there is some
a € C~! and z; such that a = Op + Opz; and the element € = (z; — z;) "6 1 is such that ®(¢) € EX NH",
where § is a generator of the different ideal of F. The points z; produced by this algorithm give us the
decomposition (17), so we simply need to modify the algorithm to select z; such that ®(z;) € E* NH" rather
than ®(¢) € E* NH". Below we give a modified version of Streng’s algorithm, where the only differences
are that we have specialized to the case of a quadratic totally real subfield with narrow class number 1, and
we are using a different choice of CM point as mentioned in the previous sentence.

Algorithm 4.1

INPUT: A quartic abelian CM field E = F(v/A) and a CM type ® where A € F, F is totally real of degree
2, and F' has narrow class number 1.
OUTPUT: A complete set of representatives z, € CM(E, &, OF).

(1) Compute a set of representatives of the ideal class group of E.

(2) Compute an integral basis of Op.

(3) Write each element in the integral basis of O in the form z; + yiVA where z;,y; € F.
(4) Compute all elements a € O up to multiplication by (O)? such that

6
(18) INejq(a)l < \/INF/a(A)] dr 5.

(5) For each a, compute a complete set of representatives T, for Or/(a).

(6) For each a, compute all b € T, for which a divides b* — A.

(7) For each pair (a,b) and each basis element x; + y;v'A of Op, check if y;a € Op,x; £ y;b € Op,
and a~'y;(A — b?) € Op hold. Remove the pair (a,b) from the list if one of these conditions is not
satisfied.

(8) For each pair (a,b), let

VA —b

a
Check if ®(z) € EX NH? and if
a=0r+Opz
is a fractional ideal of E. If so, then z is a CM point corresponding to the fractional ideal class of a.
Search through the pairs (a, b) until a CM point has been found for each fractional ideal class in E.

In the appendix we present an implementation of Algorithm 4.1 in Sage.

5. EXAMPLES

We conclude by giving several examples of Theorems 1.2 and 1.3, including explicit CM points obtained
by Algorithm 4.1 and a cyclic quartic field not covered by either of these theorems. For the convenience of
the reader, we have included a couple of tables of CM points for biquadratic and cyclic quartic CM fields of
small class number.

Example 5.1. (Theorem 1.3, p = 13,q = 3) Let E = Q(v/13,1/—3) be a biquadratic CM field with totally
real subfield F' = Q(v/13). Note that F' has narrow class number 1. Then hg =2,h_35=1,h_39 = 2, h13 =
2,w_3 =6, and w_39 = 2. A fundamental unit is e;3 = (v/13 +3)/2. Let ® = {id, ¢} be the CM type where
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id is the identity map and o is the automorphism such that o(v/13) = —+/13 and o(v/—3) = v/—3. By our
implementation of Algorithm 4.1, we find that
s _V/=3-v13 B _ V=3-3Vv13
1= 2 ) 2 = /713 + 5

is a complete set of CM points of type (E, ®). By Theorem 1.2, we compute

(mf r+r> (r 3v/13 F+3W>

VI3+5 7 —V13+5

39) L (55) I (55) I (50)

i5) T2 (33) o (3)) 2ios (55
6

2(ﬁ)F ( 5) T2 (73) T2 (33)

Example 5.2. (Theorem 1.2, p =29, ¢ = 31) For an example involving a larger class number, consider the

biquadratic CM field £ = Q(v/29,+/—31). Then E has real quadratic subfield F = Q(+/29) with narrow

class number 1. Similarly to Example 5.1, we will use the CM type ® = {id, o} where ¢(v/29) = —v/29 and

0'(\/ —31) =V —31. We have hE = 2]., h,31 = 37 h,29.31 = 14,w,31 = 2, W_929.31 = 2 and €29 = (\/ 29 — 5)/2
Table 3 gives a complete set of CM points z, € CM(E,®,Op). Then Theorem 1.2 gives

) 899

21 31 z 3y (k) 29 21x29 (k)
1 2 o\ 2xe(k kE\ X k s105( V232

H(® = — (= T |l P
H (®(za)) (24877) klzll (31) H (899) kl;[l <29) ’

[a]eCL(E

k k
where x29(k) = (29> xs1(k) = (31> and x = 29 - x31 18 the product of the characters induced by yag9
and xs31 on (Z/8997)*, or equivalently, x is the Kronecker symbol associated to the field Q(1/—899).

Example 5.3. (Theorem 1.3, p = 13,4 = —1, B = 2) Counsider the real quadratic field FF = (Q(v/13),
which has narrow class number 1. Since 13 = 22 + 32, then by taking B = 2 as in Theorem 1.3, the field

E =F(y/—(134+24/13)) is a cyclic CM field of degree 4 over Q. Let ® = {id, 7} be the CM type consisting

of the identity map and the map 7 such that (\/ —(13+ 2\/ﬁ)> =4/ —(13 — 2+/13). The number 2 is a

primitive root modulo 13. Let x be the character of (Z/13Z)* such that x(2) = i. A simple calculation
shows B1(x) = —1 —i. We have hgy = 1, and a fundamental unit is 33 = (v/13 + 3)/2. Finally, using

our implementation of Algorithm 4.1, we compute that (1/—(13 +2v/13) — 3v/13)/(v/13 4+ 5) is a CM point
corresponding to the only fractional ideal class in E. We have dp = 13 and dg = 2197. Now by Theorem
1.3,

—(13+2v13) =313 /—(13 — 2V13) + 3V13

V13 +5 ’ —V13+5
1 (F(é)F(é)F(é)F(%)F(&)F(%)>%
BVER \T ()T () T ()T ()T ()T (3)
y (Fz (35) T2 (5) T2 (35) T2 (35) T2 (33) T2 (ii)) t10g( V152 )
2 () T2 (35) T2 () T2 (35) T2 (75) T2 (33)

Example 5.4. (Theorem 1.3, p = 109, A = —1, B = 10) Let F = Q(1/109) and £ = Q (\/ (109 + 10v/ 109)).

Since 109 = 102 + 32, then F is a cyclic quartic CM field with totally real quadratic subfield F. The class
number of F is hg = 17, and F has narrow class number 1. Let ® = {id, 7} be the CM type consisting of the



12 ROBERT CASS

identity map and the map 7 such that T(\/— (109 4+ 10v/109)) = \/— (109 — 10v/109). The number 6 is a

primitive root modulo 109, so let x be the character of (Z/109Z)* such that x(6) = 4. Then B (x) = —5—3i.
A fundamental unit is €199 = (25v/109 + 261)/2, and we have dr = 109,dr = 1093. Substituting this data
into Theorem 1.3, we get

ir 108 La(k) 108 _ 17xa09(k)
1 2 k 2 k 4o (25\/109+261>
[a]ECL(E) 81/ 109 pale 109 P 109

k
where the 17 CM points are given in Table 4, x109(k) = (), and

109
5, i (k) =1,
_ =5, if X(k) = -1,
M) =905 it (k) =4,
~3, if y(k) = —i.

Example 5.5. (D=5, A=-3, B=1) For an example of a cyclic quartic CM field not covered by Theorem 1.3,
let E =Q < -3 (5 + \/5)) and F = Q(\/g), which has narrow class number 1. Then we are in case 2 as

in (11), so let m = 23-3 .5 = 120. By Lemma 2.3, m is the least positive integer such that E C Q(()-
Let G = Gal(Q(¢n)/Q), and denote by o; € G the automorphism such that o4(¢,,,) = ¢!,. As determined
by (12), we have that kK = —1 + 2¢ € Z[i] is primary. Moreover, x is prime. Set S = S;(k) as in (15). By
Lemma 2.6, a primitive element for F over Q is

V=3(5 +8)/V2.

oo (1)-1).

A calculation shows that, as primitive characters,

By Lemma 2.2,

XF = {X17X2}

x1=1, xo(k)= (g) .

To determine Hp, note that by the discussion at the end of Section 2,

w D= (3): wB=(5). @ls) =

where

3 2

where . is the biquadratic residue character modulo . Hence if

(19) (5) (5) w0 =1

then it is certainly true that o, € Hp. A calculation shows that (19) holds for ¢ € {1,59,71,79,89,91,101, 109}.
This set has order 8, and we know that Hg has order 8 since G/HF is cyclic of order 4 and |G| = 32, so this
set must be Hg. By another calculation we find that

Xr = {x1,x2: X3, X3}
where x; and x2 are as before, and x3 is the character of conductor 120 such that
xs(31) = =1, x3(61) =—1, xs(41) =—1, x3(97) =i.
We have dp = 5,dp = 2°-32.5% hp = 4, B1(x) = 2+2i, and €5 = (v/5+1)/2. Let ® = {id, 7} be the CM
type where 7 (\/—3 (5 + \/5)> = \/—3 (5 — \/5) Proceeding in the same way as in the proof of Theorem
1.3, we find
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[I H@E) = ﬁ ( )a(k) <F2 (3) T2 (‘é)) s (57
[a]eCL(E) ’ 2232572 32 s 120 [y (%) [y (%) ’
where
1, if x(k) =—1or x(k) = —i,
alk)y=<¢ -1, if x(k)=1or x(k) =1,
0, if ged(k,120) > 1,
and the four CM points z, computed using Algorithm 4.1 are

\/7\[ \/=3(5+v5) 2,/-3(5+/5) \/=3(5+v5)
_ —3(5+ 5), =t = et =

Table 1 shows a complete set of representatives of the CM points for the biquadratic CM fields £ =
Q(y/p, v/—¢q) and all primes p, ¢ < 50 such that p = 1 (mod 4), ¢ = 3 (mod 4), the class number of E
is less than 4, and F' has narrow class number 1. Here the CM type is given by ® = {id,o} where o is
the automorphism of E such that o(,/p) = —/p and o(y/—q) = /—¢q. Table 2 shows a complete set of

representatives of the CM points for the cyclic CM fields E = Q( —(p+ B\/ﬁ)) where p, B are as in
Theorem 1.3 and p < 101. The CM type is ® = {id, 7} where 7'( —(p+ B\/;E)) =4/-(p-Byp). In

both cases, the CM points z are such that each Or + Opz belongs to a distinct fractional ideal class in F.
For each field F, the first CM point listed corresponds to the fractional ideal class of Op.

Table 1: CM points for biquadratic fields Q(,/p, /—¢) with small
class number

Primes # CL(Q(y/p,v/—q)) | CM Points
p=5 g¢=3 |1 7_32_\/5
V=I1-v5 | V=11+5
p=5 qg=11 |2 5 1
V=23-v5 | V/=23-1 V=23-2V/5-1
p=5 ¢=23 |3 5 4 4
V=3-V13 | V/=3-3V13
p=13, ¢g=3 |2 5 T3 45
V=T -1
p=13, ¢=7 |1 7#\/73
p=13, q=19|3 V-19-V13 | V-19+V13 | V=19-V13
oY a 2 4 4
V=3T—-V13 | V=311 V=31-2V/13-1
p=13, ¢=3113 5 1 I
V=3 -1
p=17, ¢=3 |1 #
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V=11 — V1
p=17, ¢=11 #
V=19 — V17 | V=19 + V17
p=17, q¢=19
2 6
V=3-v29 | V=3+v29 V=3-v29
p=29, qgq=3
2 4 4
V=T-V29 | V=T-7V29
p=29, q=7
2 —3v29 + 17
V=T =37 | V=7T—-1TV37
p=37, q=7
2 —9v/37 + 55
—3— 41
p—4l, g—3 V=3-VA1
2
EUTREET V-IT—VAa1 | V=11+3V41 | /-11-3V41
p=25 4= 2 12441 + 794 | —124/41 + 794
Table 2: CM points for cyclic quartic fields Q < — (p + B\/ﬁ)) =
Q(\/E) as in Theorem 1.3 for p < 101.
Parameters #CL (Q ( —(p+ B\/p?)>) CM Points
p=5 B=2 1 M
2
A _
V13 +5
p=29, B=2 1 M
—44/29 4 22
A _
p=37, B=6 |1 q
p=53, B=2 1 M
V53 +9
p=6l, B=6 1 M
—V61+9
VA — /101 VA +3v101 | VA —3V/101
p=101, B=10|5
2 19+/101 4+ 191 | 194/101 + 191
VA 43101 | VA = 3y/101
V101 + 11 V101 + 11
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The biquadratic field Q(v/29,/—31) has class number 21 and the cyclic field Q (\/— (109 + 10V 109))

has class number 17. Tables 3 - 4 show CM points corresponding to the fractional ideal classes computed
using the code in the appendix. The CM points and CM types are as in Tables 1 - 2.

Table 3: CM points for Q (\/@, V/—=31) (see Example 5.2)

V=31 —+v29 V=31-1 V=31 -2v29 -1
2 4 4
V=31 ++29 V=31 —+/29 V=31++/29
29 +7 V29 +7 —44/29 + 22
V=31 —-+29 V=31 + 5v29 V=31 — 529
—44/29 + 22 —3v29 + 17 —3v29 + 17
V=31+5v29 | v/=31-5V29 V=31 + 29
—2/29 + 12 —24/29 + 12 6
V=31 - 29 V=31+4+4v29-1 | v=31+2v29-1
6 —2v/29 + 14 —2/29 + 14
V=314 19v29 | /=31 —19v/29 V=31 +19v29
—74/29 + 39 —74/29 + 39 —3v29 419
V=31-19v29 | v/=31+10v29-1 | /=31 —-8v29—1
—3+/29 + 19 —6+/29 + 34 —6/29 + 34

Table 4: CM points for Q <\/— (109 + 10\/@)) = Q(VA) (see

Example 5.4)

VA = 3/109 VA -2V/1094+1 | VA —4y109—-1 | VA + 3109
—/109 + 11 6 6 511/109 + 5335
VA — 3/109 VA + 3109 VA — 3109 VA + 3109
511/109 + 5335 V109 + 13 V109 + 13 218+/109 + 2276

VA — 3109 VA +4/109+1 | VA —4v/109 — 1 | VA +4/109 + 1
218v/109 + 2276 3v/109 + 33 3v/109 + 33 —3v/109 + 33
VA-—2V109+1 | VA+2V/109-1 | VA —4V/109—-1 | VA + 21109

—3v/109 + 33 —3v/109 + 33 —3v/109 + 33 143v/109 + 1493

VA —21/109
143v/109 + 1493
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6. APPENDIX

Below we give our implementation of Algorithm 4.1 in Sage. The user can input relatively prime square-
free integers d1 = dy > 1 and d2 = dy > 1 and compute the CM points for the biquadratic extension
Q(v/d1,/—ds). Alternatively, the user can input d1 = D,A = A < 0, and B= B as in (6) - (8) and compute

the CM points for the cyclic extension Q (, [A (D + B@)) The CM type is the same as in Tables 1 and

2. If the program succeeds in finding a complete set of CM points z,, the output is a list of ordered pairs
[a,b] such that a,b € E and
VA -b
z2=—

a
gives the decomposition

a=0p+ OFpz,
where a C F is the fractional ideal generated by 1 and z. One such z is given for each ideal class in E. Here
A = —ds in the biquadratic case, and A = A(D + B+/D) in the cyclic case. The variable f appearing in the
output is v/dj.

#Robert Cass, July 6, 2014, Computation of CM points for quartic abelian fields

oM = QQ4

3

4

5

dl =5
#F is the number field Q(f) obtained by adjoining a positive square root of dl
F.<f> = QuadraticField (dl,embedding=1)

if order(F.narrow_class_group()) = 1:

G = F.galois_group ()
R.<t> = F[]

#Use this code for the biquadratic case
d2 = 3
D = —d2

#Use this code for the cyclic case
#B = 2

#A = —1

#D = Ax(d14B=«f)

print "f = sqrt(”, d1, ”), F=Q(”, f, 7), E=F(”, D, 7)”

#K is the number field Q(c) obtained by adjoining a square root of D to F, to is
#the map from the relative number field2=F(e) to to K

E.<e> = F.extension (t"2-D)

K.<c> = E. absolute_field ()

fr, to = K.structure ()

Disc = F.discriminant ()

#Completes step 1
CL = K. class_group ()

#Completes step 2
OEBasis = E. integral_basis ()

#Completes step 3
X =]
Y = ]
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for i in range(0,len (OEBasis)):
Y.append ((E(OEBasis[i])—(E.complex_conjugation () (OEBasis[i])))/(2xe))
X.append ((E. complex_conjugation () (OEBasis[i])+E(OEBasis[i]))/2)
#This is the bound on ideal norms as in step 4 of the algorithm
Bound = abs(D)x*abs(Disc)*6/pi~2

#Completes steps 4—5 and imposes the condition on CM type
A = F.ideals_of_bdd_norm (Bound)
C=1
for d in range(1l,len(A)):
if len(A[d]) > O:
for J in A[d]:
b=J. gens_reduced () [0]
if G[0](b) > 0 and G[1](b) > O:
C.append (b)
if G[0](=b)> 0 and G[1](—=b) > O:
C.append(—b)
if G[O](bxF.units()[0]) > 0 and G[1](bxF.units()[0]) > O:
C.append (b*F. units () [0]

) [0])
if G[0](—bx*F.units()[0]) > 0 and G[1]( —bxF.units () [0]) > O:
C.append(—bxF. units () [0])
IList = []
ZList = []
if Mod(dl,4) — 1:
s = to((1+1£)/2)
else:
s = to(f)
done = false

for a in C:

#Completes step 6
L =]
for b in (F.ideal(a).residues()):
if F.ideal(a).divides(F.ideal(b"2-D)):
L.append ([a,b])

#Completes step 7
LL = ]
for pair in L:
for i in range(0,len (OEBasis)):
if (Y[i]xpair[0]).is_integral () and (X[i]4+Y[i]*pair[1l]).is_integral
() and (X[i]=Y[i]*pair[1l]).is_integral() and ((1/pair[0])«Y[i]*(D-pair[1]°2)).
is_integral () and pair not in LL:
LL.append (pair)

#Completes step 8 and explicitly verifies that the CM points give the
appropriate decomposition of fractional ideals
for n in range(0,len(LL)):
N = to(e—LL[n][1])
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else

[BSM]
[BY]
[CSa]
[CSD]
[Den)
[IR]

[KKS]

[Lan]
[St13]

[Str10]
[SW]

ROBERT CASS

De = to(LL[n][0])
if CL(K.ideal(N/De,1)) not in IList:
a_l = K.vector_space () [2](N/De)
a_2 = K.vector_space () [2](s*N/De)
a_3 = K.vector_space () [2](1)
a_4 = K.vector_space () [2](s)
V = M.span ([a-1,a-2,a-3,a_4],2Z)
U = K.ideal (N/De,1) . free_module ()
if U= V:
IList .append (CL(K. ideal (N/De,1)))
ZList .append ([LL[n][0] ,LL[n][1]])

if CL.order() = len(IList):
done = true
break
if done:
print ”Found complete set of CM Points:”
print ZList

else:
print 7 Failure to find complete set of CM points.”

print ”F does not have narrow class number 1.7
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