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Statement of Results

Theorem (B-S, Peirce, W)

Let di > 0 and d» < O be square-free, co-prime integers with di = 1
mod 4 and d =2 or 3 mod 4. Assume K = Q(+/d1) has class number
one and let E = Q(\/d1,\/d2). Then if

|db| > Ci(ch) = (318310)2dy exp {J?l(|og(4d1) + 2)} ,

then there exists a character x € @) such that L (X, %) # 0.




Connection to Eisenstein Series

Under our assumptions on K and E, the average formula becomes

1 2nd; \ 2 1
0 L(le) = EK(ZO 71)
he Z 2 V]| ] [OF : OF] Er2

xeCI(OF)

where the special point is

20 = <\/d>27 \/672) € H-.
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0 L(le) = EK(ZO 71)
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where the special point is

20 = (\/6727 \/672) € H-.

From this formula, it suffices to show that

EK(ZOEa %) 7& 0.



Decomposition of the Eisenstein Series

Proposition

We have

where

Ex(zog, 3) = M(d1, db) + H(d1, d>)

M(as, 02 = /Tl | 22 (1og (1) ~ 108 (5 ) = 2000 + 1o8(4)) ) + 211

and

di

H(did) = VId] Y S aly(zop))e? 0w,
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The plan of the proof

@ By the previous proposition and the reverse triangle inequality,

|Ex(20,: 3)| = IM(d1, d2)| — |H(d1, o).
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The plan of the proof

@ By the previous proposition and the reverse triangle inequality,

|Ex(20,: 3)| = IM(d1, d2)| — |H(d1, o).

@ Hence it suffices to show |M(di, d2)| > |H(d1, d2)|.

e We will give an upper bound for |H(d1, d2)| and a lower bound for
|M(dq, do)|.



An Upper Bound for |H(d\, db)|

|db| > (318310)2d; exp {\/d_l(log(4d1) + 2)} :

|H(d1, db)| < 6.80 x 107401,
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An Upper Bound for |H(d\, db)|

Proposition
If

da] > (318310)%s exp { v/ (log(4ch) +2) }
then

|H(d1, db)| < 6.80 x 107401,

The proof involves a very complicated argument to effectivize an upper
bound of Bauer




A Lower Bound for M(dy, d>)

We have

M(dl, dg) > 1.
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A Lower Bound for M(dy, d>)

We have

M(dl, d2) > 1.

The proof uses lhara's lower bound

vk > —2(log(4ch) + 2)(log(v/d1) — vg — log(4))
and the lower bound

Rk > log(2v/d4).
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Summary

e For
|dy| > (318310)2d} exp {\/dT(Iog(4d1) + 2)} :

we have |H(di, d2)| < 1 and M(dy, d2) > 1.
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Summary

e For
|dy| > (318310)2d} exp {\/dT(Iog(4d1) + 2)} :

we have |H(di, d2)| < 1 and M(dy, d2) > 1.
o Thus |[M(di,db)| > |H(dy, d>)], implying |Ex (2o, 3)| > 0.

@ Hence, by the average formula, there exists a x € C//((’)\E) such that
L(x,3) #0.
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@ Choose d; = 5.
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Example

@ Choose d; = 5.

@ Then
C1(5) = 2.77028 x 103,

@ Hence for all
|dp| > 2.77028 x 10'3,

there exists a x such that L(x, %) £ 0.
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Some Remarks

@ The restrictions on d; and db were made to simplify the presentation.

@ A version of the main result holds for any CM extension E of K when
K has class number one.

@ One has reduced the question of the existence of non-vanishing
L(x, %) to a (large!) finite calculation.



