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1. Background & Introduction

Mathematicians have been interested in the sum of squares for several centuries. The
following historical background can be found in Grosswald’s Representations of Integers as
Sums of Squares [Gro85]. Diophantus (325–409 A.D.) discussed several problems connected
with the Diophantine equation

x2 + y2 = n.(1.1)

It appears that Girard (1595–1632) was the first to state the correct necessary and sufficient
conditions on n for the solvability of (1.1) in the integers. Girard had the following conditions
on n: n has to be a square, a prime p ≡ 1 (mod 4), a product of such numbers, or the product
of one of the preceding with a power of 2. There is no indication that Girard had (or even
claimed to have) a proof for his statement.

Shortly afterward, Fermat (1601–1665), most likely independently, stated, as a condition
on odd n, that n ≡ 1 (mod 4) and that when n is divided by its largest square factor, the
quotient should not contain any prime q ≡ 3 (mod 4). In this statement, Fermat leaves
out the even integers, but it appears from some of his other remarks that Fermat knew
the complete theorem. Fermat claimed to have an “irrefutable proof” [Gro85, p. 14] of his
statement. Although his proof was never made public, from Fermat’s letters to Descartes
and Mersenne, it seems that Fermat had a proof based on the method of descent.

However, according to Gauss, it was Euler (1707–1783) who gave the first known proof of
a statement which is essentially equivalent to the following theorem.

Theorem 1.1. The Diophantine equation (1.1) is solvable if and only if all prime divisors
p of m with p ≡ 3 (mod 4) occur in n to an even power.

A proof of Theorem 1.1 can be found in Chapter 2 of Grosswald’s Representations of Integers
as Sums of Squares [Gro85].

Mathematicians have not been solely interested in the sum of two squares over the cen-
turies; they have also been interested in the sum of three or more squares. However, for
the remainder of this paper, we are primarily interested in the sum of three squares, with
possibly some of the squares being multiplied by a positive integer before being added to
the other squares. Before we state the general problem discussed in this paper, we discuss
a well-known question related to a special case of the problem concerning the sum of three
squares: What are the conditions on n if the Diophantine equation

x2
1 + x2

2 + x2
3 = n(1.2)

has solutions in integers xi (i = 1, 2, 3)?
Diophantus gave a condition for the solvability of (1.2) if n ≡ 1 (mod 3). Diophantus’s

condition for n ≡ 1 (mod 3) is essentially equivalent to n 6= 24k + 7 for some integer k.
1
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Bachet (1581–1638) found Diophantus’s condition insufficient and added the condition that
n 6= 96k + 28 some k. Fermat deemed that Bachet’s conditions were insufficient and formu-
lated the correct conditions. In a letter to Mersenne, Fermat stated that no integer of the
form 8k+ 7 is the sum of three squares. Particular cases of representations as sums of three
squares were considered by Descartes (1596–1650), Euler, Lagrange (1736–1813), Legendre
(1752–1833), and others. In 1798, Legendre became the first person known to provide a
proof of the following theorem which now bears his name.

Theorem 1.2 (Legendre’s Three-Square Theorem). The Diophantine equation

x2
1 + x2

2 + x2
3 = n

has solutions in integers xi (i = 1, 2, 3) if and and only if n is not of the form 4a(8k + 7)
with a, k ∈ Z.

A proof of Legendre’s Three-Square Theorem can be found in Chapter 4 of Grosswald’s
Representations of Integers as Sums of Squares [Gro85].

We consider a generalization of the sum of three squares problem involving positive definite
ternary quadratic forms. LetQ(~x) = Q(x1, x2, x3) be some positive definite ternary quadratic
form with integral coefficients. We say that an integer m is (globally) represented by Q
if there exists ~x ∈ Z3 such that Q(~x) = m. As evidenced by the historical discussion,
while attempting to answer the question of when is m is globally represented by an integral
quadratic form Q, numerous mathematicians have considered the weaker condition of m
being locally represented (everywhere) by Q, meaning that m is locally represented at p
for every prime p and there exists ~x ∈ R3 such that Q(~x) = m. An integer m is locally
represented by Q at the prime p if for every nonnegative integer k there exists ~x ∈ Z3 such
that Q(~x) ≡ m (mod pk).

In 1988, Duke [Duk88] proved that every sufficiently large square-free integer that is locally
represented everywhere by Q is globally represented by Q as an application of bounds for
sums of Kloosterman sums given by Iwaniec [Iwa87]. In 2005, Duke quantified sufficiently
large in terms of the determinant D of Q, where the determinant of Q is defined by the 3×3
determinant

D = det(∂2Q/∂xi∂xj).

Theorem 1.3 (W. Duke, [Duk05]). There is an absolute constant c > 0 so that Q(~x) = m
has integral solution provided that

m > cD337

is square-free and that the congruence Q(~x) ≡ m (mod 8D3) has a solution. The constant c
is ineffective.

Let S(Q) be the set of square-free integers that are locally represented everywhere by the
quadratic form Q but are not globally represented by Q. Theorem 1.3 says the cardinality
of S(Q) is finite and gives an asymptotic bound on max(S(Q)). Theorem 1.3 raises several
questions: How sharp is this bound? Is D the best measure of this lower bound? This
paper attempts to find a lower bound using computational methods. Let S(Q, n) be the set
of elements in S(Q) that are less than n. Sage code that computes S(Q, n) under certain
conditions can be found in Appendix C.

A quadratic form Q is called regular if every integer locally represented everywhere by Q
is globally represented by Q. We see from the definition of regular that if the quadratic form
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Q is regular then S(Q) = ∅. In 1939, Jones and Pall [JP39, p. 190] provided a list of all
primitive regular quadratic forms of the form ax2 + by2 + cz2 with 0 < a ≤ b ≤ c.

One of the most well-known regular positive definite ternary quadratic forms is Q(~x) =
x2

1 + x2
2 + x2

3, the sum of three squares. The fact that this quadratic form is regular follows
from Legendre’s Three-Square Theorem.

We focus on the cases when Q is a positive definite diagonal integer-matrix ternary qua-
dratic form, meaning that Q can written as Q(~v) = ax2 + by2 + cz2, where a, b, and c
are positive integers and ~v = (x, y, z)T . Under these conditions, the discriminant of Q is
D = 8abc.

It is not immediately apparent how one can check that m is locally represented everywhere
by Q, because it appears from the definition of locally represented everywhere that one would
have to check if m is locally represented by Q at infinitely-many primes and that, for each
prime p, one would need to check for infinitely-many k ≥ 0 that there exists ~v ∈ Z3 such
that Q(~v) ≡ m (mod pk). This problem is partially addressed in Section 3.

The definition of local representation suggests that we should count the number of solutions
to the congruence Q(~v) ≡ m (mod pk) for k ≥ 0, which we denote as rpk,Q(m). For a positive
integer n, we define rn,Q(m) as

rn,Q(m) = #
{
~v ∈ (Z/nZ)3 : Q(~v) ≡ m (mod n)

}
.

We note that an integer m is locally represented by Q at p if and only if rpk,Q(m) > 0 for
every k ≥ 0. Furthermore, if rpn,Q(m) > 0, then rpk,Q(m) > 0 for any 0 ≤ k ≤ n.

To compute rpk,Q(m), we use quadratic Gauss sums, G

(
a

q

)
. Unless otherwise specified,

the term Gauss sum is taken to refer to a quadratic Gauss sum. Many Gauss sums have
closed-form evaluations, some of which are found in Section 2.

In Section 3, we show that for the quadratic form Q(~v) = ax2 + by2 + cz2,

rpk,Q(m) =
1

pk

pk−1∑
t=0

e

(
−mt
pk

)
G

(
at

pk

)
G

(
bt

pk

)
G

(
ct

pk

)
.(1.3)

The form of (1.3) suggests that we can compute rpk,Q(m) using the fast Fourier transform
(FFT). We explain how this is possible in Section 3.1.

Although Section 3.1 describes how rpk,Q(m) can be computed using the FFT, it does not
say how large k must be to determine if an integer m is locally represented everywhere by
Q. In Section 3.2, we use a version of Hensel’s Lemma to determine how large k must be to
decide local representation at a prime p.

In Section 3.2, we use Gauss sums and Hensel’s Lemma to find some closed-form formulas
for rpk,Q(m). We start with when p is an odd prime. Theorem 3.6 says that if p - m, then

rpk,Q(m) =



p2k

(
1 +

1

p

(
−abcm
p

))
, if p - abc,

p2k

(
1− 1

p

(
−ab
p

))
, if p - ab and p | c,

p2k

(
1 +

(
am

p

))
, if p - a, p | b, and p | c.
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Theorem 3.10 states that if p - abc and m = m0p, where gcd(m0, p) = 1, then

rpk,Q(m) =

p
2 if k = 1,

p2k

(
1− 1

p2

)
, if k ≥ 2.

From Theorem 3.6 and Theorem 3.10, we can conclude that if p is an odd prime, p - abc,
and m is square-free, then rpk,Q(m) > 0 for all k. This implies that m is locally represented
at the prime p if m is square-free and p - abc.

Theorem 3.11 says that if p - ab, c = c0p, m = m0p, and k ≥ 2, where gcd(m0, p) = 1 and
c0 ∈ Z, then

rpk,Q(m) =


p2k

(
1 +

1

p

(
c0m0

p

)
+

(
−ab
p

)(
1− 1

p

))
, if p - ab and p ‖ c,

p2k

(
1− 1

p

)(
1 +

(
−ab
p

))
, if p - ab and p2 | c.

Combined with Theorems 3.6 and 3.10, Theorem 3.11 allows us to determine if a square-
free integer m is locally represented at the odd prime p given that a, b, and c are pairwise
coprime.

Theorem 3.16 states if 2 - abc and k ≥ 3, then

r2k,Q(m) =


22k

(
1 +

1

16

(
2

abcm

)(
κw + λw

(
−1

m

))
+

1

8
λw

(
−1

m

))
, if 2 - m,

22k

(
1− 1

8
κw

)
, if 2 ‖ m,

where w is the number of elements in {a, b, c} that are congruent to 3 (mod 4), κw =
4(−w2 + 3w − 1), and λw = 4 · (−1)bw/2c. Theorem 3.16 allows us to determine if a square-
free integer m is locally represented at the prime 2 given that a, b, and c are odd. Therefore,
from Theorems 3.6, 3.10, 3.11, and 3.16, we can determine if a square-free integer m is locally
represented everywhere by Q given that a, b, and c are odd and pairwise coprime.

In Section 4, we discuss patterns found in numerical computations done concerning the
integers locally represented everywhere but not globally represented by certain quadratic
forms. The numerical computations used some of the formulas found in Section 3. In
Section 5, we summarize our results, describe open questions, and suggest areas for future
research.

2. Formulas for Gauss Sums

Suppose a, q ∈ Z with q > 0. The quadratic Gauss sum G

(
a

q

)
over Z/qZ is defined by

G

(
a

q

)
:=

∑
j (mod q)

e

(
aj2

q

)
=
∑

j∈Z/qZ

e

(
aj2

q

)
=

q−1∑
j=0

e

(
aj2

q

)
,

where e(w) = e2πiw. Throughout this paper, we abbreviate e2πiw as e(w).
Throughout this section, take a to be an integer. The formulas in this section are useful in

computing rpk,Q(m). (See Section 3 to see how quadratic Gauss sums can be used to compute
rpk,Q(m).) Appendix A contains code written for Sage that can compute the quadratic Gauss
sums mentioned in the current section.
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This first sum is not a quadratic Gauss sum but is used to compute Gauss sums and
rpk,Q(m).

Lemma 2.1. Let a, q ∈ Z and q > 0. Then

q−1∑
t=0

e

(
at

q

)
=

{
q, if a ≡ 0 (mod q),

0, otherwise.

Proof. Since e
(
at
q

)
is a character of a group of order q, the lemma follows from the orthog-

onality of characters [Apo76, Theorem 6.10, p. 136]. �

The following lemma is a generalization of Lemma 2.1.

Lemma 2.2. Let a, n, q ∈ Z, n > 0, and q > 0. Then

nq−1∑
t=0

e

(
at

q

)
=

{
nq, if a ≡ 0 (mod q),

0, otherwise.

Proof. Suppose a ≡ 0 (mod q). Then there exists α ∈ Z such that a = αq. Therefore,

nq−1∑
t=0

e

(
at

q

)
=

nq−1∑
t=0

e

(
αqt

q

)
=

nq−1∑
t=0

e(αt) =

nq−1∑
t=0

e2πiαt =

nq−1∑
t=0

1 = nq.

Suppose a 6≡ 0 (mod q). Note that e(0) = e(an) = e
(
anq
q

)
. Thus,

nq−1∑
t=0

e

(
at

q

)
= e

(
a · 0
q

)
+

nq−1∑
t=1

e

(
at

q

)

= e(0) +

nq−1∑
t=1

e

(
at

q

)

= e

(
anq

q

)
+

nq−1∑
t=1

e

(
at

q

)

=

nq∑
t=1

e

(
at

q

)
.

Mapping t 7→ t+ 1, we find that

nq−1∑
t=0

e

(
at

q

)
=

nq∑
t=1

e

(
at

q

)
=

nq−1∑
t=0

e

(
a(t+ 1)

q

)

=

nq−1∑
t=0

e

(
at

q

)
e

(
a

q

)

= e

(
a

q

) nq−1∑
t=0

e

(
at

q

)
.
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Because a 6≡ 0 (mod q), e

(
a

q

)
= e2πia/q 6= 1. By subtracting e

(
a

q

) nq−1∑
t=0

e

(
at

q

)
from both

sides of previous equation, we get(
1− e

(
a

q

)) nq−1∑
t=0

e

(
at

q

)
= 0.

Since e

(
a

q

)
6= 1, the last equation implies that

nq−1∑
t=0

e

(
at

q

)
= 0. �

The next lemma follows immediately from Lemma 2.1. It gives the value of the exponential

sum
∑q−1

t=1 e
(
at
q

)
if a 6≡ 0 (mod q).

Lemma 2.3. Let a, q ∈ Z and q > 0. If a 6≡ 0 (mod q)

q−1∑
t=1

e

(
at

q

)
= −1.

Proof. By Lemma 2.1,

1 +

q−1∑
t=1

e

(
at

q

)
= e

(
a · 0
q

)
+

q−1∑
t=1

e

(
at

q

)
=

q−1∑
t=0

e

(
at

q

)
= 0.

By rearranging terms in the last equation, we get the result of the lemma. �

We now provide a link between Gauss sums and exponential sums.

Lemma 2.4. Suppose p is an odd prime and a ∈ Z.Then

G

(
a

p

)
=

p−1∑
t=0

(
1 +

(
t

p

))
e

(
at

p

)
,(2.1)

where

(
·
p

)
is the Legendre symbol.

If a 6≡ 0 (mod p), then

G

(
a

p

)
=

p−1∑
t=0

(
t

p

)
e

(
at

p

)
=

p−1∑
t=1

(
t

p

)
e

(
at

p

)
.

Proof. As noted by Cohen [Coh93, p. 27], the number of solutions modulo p of the congruence

j2 ≡ t (mod p)

is 1 +

(
t

p

)
. Therefore,

G

(
a

p

)
=

p−1∑
j=0

e

(
aj2

p

)
=

p−1∑
t=0

(
1 +

(
t

p

))
e

(
at

p

)
.
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When a 6≡ 0 (mod p),

G

(
a

p

)
=

p−1∑
t=0

(
t

p

)
e

(
at

p

)
follows from (2.1) and Lemma 2.1.

Because

(
0

p

)
= 0,

p−1∑
t=0

(
t

p

)
e

(
at

p

)
=

p−1∑
t=1

(
t

p

)
e

(
at

p

)
.

�

We now begin to list the values of some Gauss sums. Lemma 2.5 can be used to compute

G

(
0

q

)
for any positive integer q.

Lemma 2.5. Let q be a positive integer. Then

G

(
0

q

)
= q.

Proof. By the definition of a quadratic Gauss sum,

G

(
0

q

)
=

q−1∑
j=0

e

(
0j2

q

)
=

q−1∑
j=0

1 = q.

�

The next lemma gives us the value of G
(a

1

)
for any integer a.

Lemma 2.6. For any a ∈ Z,

G
(a

1

)
= 1.

Proof. By definition,

G
(a

1

)
=

1−1∑
j=0

e

(
aj2

1

)
=

0∑
j=0

e
(
aj2
)

= e
(
a · 02

)
= 1.

�

Most formulas for a Gauss sum G

(
a

pk

)
assume that a is coprime to the prime p. The

next lemma relates G

(
a

pk

)
to another Gauss sum G

(
a0

pk

)
where a0 is coprime to p.

Lemma 2.7. Suppose k is a positive integer, p is a positive prime integer, and a 6= 0. Let `
be such that p` ‖ a. Let a = a0 · p` so that gcd(a0, p) = 1. If ` ≤ k, then

G

(
a

pk

)
= p`G

(
a0

pk−`

)
.(2.2)
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Proof. By the definition of a quadratic Gauss sum,

G

(
a

pk

)
=

pk−1∑
j=0

e

(
aj2

pk

)
=

pk−1∑
j=0

e

(
a0 · p`j2

pk

)
=

pk−1∑
j=0

e

(
a0j

2

pk−`

)

= p`
pk−`−1∑
j=0

e

(
a0j

2

pk−`

)
= p`G

(
a0

pk−`

)
.

�

Before giving any more formulas for Gauss sums, we define εpk and give some properties
of εpk . For the odd prime p and the positive integer k, define εpk as

εpk =

{
1, if pk ≡ 1 (mod 4),

i, if pk ≡ 3 (mod 4).

Lemma 2.8. Let p be an odd prime and k be a positive integer. Then ε2
pk

=

(
−1

pk

)
and

ε4
pk

= 1, where

(
·
pk

)
is the Jacobi symbol.

Proof. Suppose that pk ≡ 1 (mod 4). Then 1 = εpk = ε2
pk

= ε4
pk

. Because pk ≡ 1 (mod 4),

we can write pk as pk = 1 + 4j. By Theorem 5.9 in LeVeque’s Fundamentals of Number
Theory [LeV96, p. 110],(

−1

pk

)
= (−1)(pk−1)/2 = (−1)(1+4j−1)/2 = (−1)2j = 1.

�

The next lemma follows quickly from Lemma 2.8.

Lemma 2.9. If p is an odd prime and k is a positive integer, then εp2k = 1.

Proof. By Lemma 2.8,

εp2k =

(
−1

p2k

)
.

By the definition of the Jacobi symbol,(
−1

p2k

)
=

(
−1

pk

)2

= 1.

�

Now that we have defined εpk , we can give a formula for G

(
a

pk

)
when a and the odd

prime p are coprime.

Lemma 2.10. Suppose k is a positive integer and p is an odd positive prime integer. Suppose
gcd(a, p) = 1. Then

G

(
a

pk

)
= pk/2

(
a

pk

)
εpk ,



GAUSS SUMS & REPRESENTATION BY TERNARY QUADRATIC FORMS 9

where

(
·
pk

)
is the Jacobi symbol.

Proof. The lemma is a special case of Theorem 1.5.2 in Berndt’s, Evans’s, and Williams’s
Gauss and Jacobi Sums [BEW98, p. 26]. �

Using Lemmas 2.7 and 2.10, we develop Lemma 2.11 to compute G

(
a

pk

)
for the odd

prime p.

Lemma 2.11. Suppose k is a positive integer, p is an odd positive prime integer, and a 6= 0.
Let ` be such that p` ‖ a. Let a = a0 · p` so that gcd(a0, p) = 1. Then

G

(
a

pk

)
=

p
k, if k ≤ `,

p(k+`)/2

(
a0

pk−`

)
εpk−` , if k > `.

Proof.
Suppose k ≤ `. By the definition of a quadratic Gauss sum,

G

(
a

pk

)
=

pk−1∑
j=0

e

(
aj2

pk

)
=

pk−1∑
j=0

e

(
a0p

`j2

pk

)
=

pk−1∑
j=0

e
(
a0p

`−kj2
)

=

pk−1∑
j=0

1 = pk.

Suppose k > `. By Lemma 2.7, G

(
a

pk

)
= p`G

(
a0

pk−`

)
. We apply Lemma 2.10 to see that

G

(
a

pk

)
= p`p(k−`)/2

(
a0

pk−`

)
εpk−` = p(k+`)/2

(
a0

pk−`

)
εpk−` .

�

So far we have mostly considered the Gauss sum G

(
a

q

)
when q is an odd prime power.

We would now like to consider G

(
a

q

)
when q is an even prime power, i.e., q = 2k for some

positive integer k. We first consider the value of G
(a

2

)
.

Lemma 2.12.

G
(a

2

)
=

{
0, if gcd(a, 2) = 1,

2, otherwise.
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Proof. Write a = 2a0 + r, where a0 ∈ Z and r = 0 or 1. By definition of quadratic Gauss
sums,

G
(a

2

)
=

2−1∑
j=0

e

(
aj2

2

)
=

1∑
j=0

e

(
aj2

2

)
= e

(
a · 02

2

)
+ e

(
a · 12

2

)
= e(0) + e

(a
2

)
= 1 + e

(
2a0 + r

2

)
= 1 + e(a0) e

(r
2

)
= 1 + e

(r
2

)
= 1 + (−1)r.

If a is odd, then G
(a

2

)
= 0. If a is even, then G

(a
2

)
= 2. �

Before we compute G
( a

2k

)
for k > 1, we define ρa and state some of its properties. For

the odd integer a,

ρa = 1 + ia =

{
1 + i, if a ≡ 1 (mod 4),

1− i, if a ≡ 3 (mod 4).

Lemma 2.13. Let a and b be odd integers. If b ≡ 1 (mod 4), then ρab = ρa. If b ≡ 3
(mod 4), then ρab = ρ̄a.

Proof. If b ≡ 1 (mod 4), then

ab ≡ a · 1 ≡ a (mod 4),

so ρab = ρa.
Suppose b ≡ 3 (mod 4). If a ≡ 1 (mod 4), then ρa = 1 + i and

ab ≡ 1 · 3 ≡ 3 (mod 4).

Thus, ρab = 1− i = 1 + i = ρa if a ≡ 1 (mod 4).
If a ≡ 3 (mod 4), then ρa = 1− i and

ab ≡ 3 · 3 ≡ 1 (mod 4).

Thus, ρab = 1 + i = 1− i = ρa if a ≡ 3 (mod 4). �

The next lemma computes G
( a

2k

)
when a is odd and k ≥ 2.

Lemma 2.14. Suppose gcd(a, 2) = 1 and k ≥ 2. Then

G
( a

2k

)
= 2k/2

(
2k

a

)
ρa.

Proof. The result follows from Equation 1.5.5 in Proposition 1.5.3 in Berndt’s, Evans’s, and
Williams’s Gauss and Jacobi Sums [BEW98, p. 26] . �

As seen in the next lemma, we can compute G
( a

2k

)
using Lemmas 2.7 and 2.14.
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Lemma 2.15. Suppose k ≥ 2 is an integer and a 6= 0. Let ` be such that 2` ‖ a. Let
a = a0 · 2` so that gcd(a0, 2) = 1. Then

G
( a

2k

)
=


2k, if k ≤ `,

0, if k = `+ 1,

2(k+`)/2

(
2k−`

a0

)
ρa0 , if k > `+ 1.

Proof.
By definition of a quadratic Gauss sum,

G
( a

2k

)
=

2k−1∑
j=0

e

(
aj2

2k

)
=

2k−1∑
j=0

e

(
a0 · 2`j2

2k

)
.

If k ≤ `, then

2k−1∑
j=0

e

(
a0 · 2`j2

2k

)
=

2k−1∑
j=0

e
(
a0 · 2`−kj2

)
=

pk−1∑
j=0

1 = 2k.

Suppose that k > `. Then by Lemma 2.7, G
( a

2k

)
= 2`G

( a0

2k−`

)
. If k = ` + 1, then by

Lemma 2.12, 2`G
( a0

2k−`

)
= 2`G

(a0

2

)
= 0. If k > `+ 1, then by Lemma 2.14,

2`G
( a0

2k−`

)
= 2`2(k−`)/2

(
2k−`

a0

)
ρa0 = 2(k+`)/2

(
2k−`

a0

)
ρa0 .

�

Now that we have some formulas for Gauss sums, we can develop formulas for rpk,Q(m).
Using Gauss sums, we begin to count the number of local solutions to Q(~v) = ax2 +by2 +cz2

in the next section.

3. Counting the Number of Local Solutions

Recall that Q(~v) is a positive definite diagonal ternary quadratic form such that Q(~v) =
ax2 + by2 + cz2, where a, b, and c are positive integers and ~v = (x, y, z)T .

The definition of local representation suggests that we should calculate rpk,Q(m), where
p is a positive prime integer and k is a nonnegative integer. We note that m is locally
represented by Q at p if and only if rpk,Q(m) > 0 for every k ≥ 0. We restrict our attention
to m ≥ 0, because given the quadratic form Q(~v) = ax2 + by2 + cz2, where a, b, c are positive
integers, there exists ~v ∈ R3 such that Q(~v) = m if and only if m ≥ 0. The case in which
k = 0 is trivial, because every integer m is congruent to 0 (mod 1), and Z/Z contains exactly
one element. Thus, r1,Q = 1, and so we only consider k ≥ 1 for the remainder of this paper.

We also only consider primitive quadratic forms so that gcd(a, b, c) = 1. The reason for
this is that if gcd(a, b, c) = d > 1, then the primitive quadratic form a

d
x2 + b

d
y2 + c

d
z2 gives

us enough information to determine which integers are (locally or globally) represented by
the quadratic form ax2 + by2 + cz2.

The first theorem of this section gives a general formula for rn,Q(m) in terms of Gauss
sums.
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Theorem 3.1. Let a, b, c, and n be positive integers. Let Q(~v) = ax2 + by2 + cz2. Then

rn,Q(m) =
1

n

n−1∑
t=0

e

(
−mt
n

)
G

(
at

n

)
G

(
bt

n

)
G

(
ct

n

)
.

Proof. By Lemma 2.1,

1

n

n−1∑
t=0

e

(
(Q(~v)−m)t

n

)
=

{
1, if Q(~v) ≡ m (mod n),

0, otherwise.

Therefore,

rn,Q(m) =
∑

~v∈(Z/nZ)3

1

n

n−1∑
t=0

e

(
(Q(~v)−m)t

n

)

=
n−1∑
x=0

n−1∑
y=0

n−1∑
z=0

1

n

n−1∑
t=0

e

(
(ax2 + by2 + cz2 −m)t

n

)

=
n−1∑
x=0

n−1∑
y=0

n−1∑
z=0

1

n

n−1∑
t=0

e

(
atx2

n

)
e

(
bty2

n

)
e

(
ctz2

n

)
e

(
−mt
n

)

=
1

n

n−1∑
t=0

e

(
−mt
n

) n−1∑
x=0

e

(
atx2

n

) n−1∑
y=0

e

(
bty2

n

) n−1∑
z=0

e

(
ctz2

n

)

=
1

n

n−1∑
t=0

e

(
−mt
n

)
G

(
at

n

)
G

(
bt

n

)
G

(
ct

n

)
.

�

The next result is a special case of Theorem 3.1, describing what happens when n is a
prime power.

Corollary 3.2. Let a, b, c, and k be positive integers, and let p be a prime. Let Q(~v) =
ax2 + by2 + cz2. Then

rpk,Q(m) =
1

pk

pk−1∑
t=0

e

(
−mt
pk

)
G

(
at

pk

)
G

(
bt

pk

)
G

(
ct

pk

)
.(3.1)

This may also be written as

rpk,Q(m) = p2k +
1

pk

pk−1∑
t=1

e

(
−mt
pk

)
G

(
at

pk

)
G

(
bt

pk

)
G

(
ct

pk

)
.(3.2)

Proof. Take n = pk in Theorem 3.1 to get (3.1).
If t = 0, by Lemma 2.5,

1

pk
e

(
−mt
pk

)
G

(
at

pk

)
G

(
bt

pk

)
G

(
ct

pk

)
=

1

pk
· 1 · pk · pk · pk = p2k.

Substituting p2k for the t = 0 term in (3.1), we get (3.2). �
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Corollary 3.2 shows that quadratic Gauss sums can be used to calculate rpk,Q(m). Meth-
ods involving the fast Fourier transform or Hensel’s Lemma can be used to evaluate (3.1)
explicitly. Section 3.1 shows how the fast Fourier transform can be used to compute rpk,Q(m).
Section 3.2 uses Hensel’s Lemma to evaluate (3.1) explicitly.

3.1. Using the Fast Fourier Transform.
The fast Fourier transform (FFT) can be used to relatively quickly calculate rpk,Q(m) for

every m ∈ Z/pkZ. The FFT is a discrete Fourier transform (DFT) algorithm. Let f(t) be
a function from Z/nZ to C, where n is a positive integer. Then the DFT creates another

function f̂ : Z/nZ→ C in the following manner:

f̂(m) =
n−1∑
t=0

f(t) e

(
−mt
n

)
.

Note that if f : Z/pkZ→ C is defined by f(t) =
1

pk
G

(
at

pk

)
G

(
bt

pk

)
G

(
ct

pk

)
, then

rpk,Q(m) = f̂(m) =

pk−1∑
t=0

f(t) e

(
−mt
pk

)
.

Therefore, the FFT can be used to calculate rpk,Q(m) for every m ∈ Z/pkZ. Appendix B
contains code written for Sage that can be used to calculate rpk,Q(m) for every m ∈ Z/pkZ.

3.2. Using Hensel’s Lemma.
The result of Section 3.1 allows rpk,Q(m) to be computed for every m ∈ Z/pkZ using the

FFT. However, it does not tell us how large k must be to determine whether an integer m
is locally represented everywhere by Q. To help determine this, we use a version of Hensel’s
Lemma. The following theorem is a version of Hensel’s Lemma specific to the quadratic
forms being considered in this section.

Theorem 3.3 (Hensel’s Lemma for odd prime powers). Let m be an integer and p be an odd
positive prime integer. Suppose ~v0 = (x0, y0, z0)T is a solution to Q(~v) ≡ m (mod pk) for
some k ≥ 1. If p - ax0, p - by0, or p - cz0, then there are exactly p2 solutions to Q(~v) ≡ m
(mod pk+1) of the form (x0 + x1p

k, y0 + y1p
k, z0 + z1p

k)T , where x1, y1, z1 ∈ Z/pZ.

Proof. Without loss of generality, assume that p - ax0.
We first prove that there exists a solution to Q(~v) ≡ m (mod pk+1) of the form (x0 +

x1p
k, y0 + y1p

k, z0 + z1p
k)T . Because Q(~v0) ≡ m (mod pk), there exists ` ∈ Z such that

ax2
0 + by2

0 + cz2
0 = m+ `pk.(3.3)

For any x1, y1, z1 ∈ Z/pZ, we expand

a(x0 + pkx1)2 + b(y0 + pky1)2 + c(z0 + pkz1)2 −m
to obtain

ax2
0 + 2ax0x1p

k + ax2
1p

2k + by2
0 + 2by0y1p

k + by2
1p

2k + cz2
0 + 2cz0z1p

k + cz2
1p

2k −m.
By rearranging terms in the last expression, we have

(ax2
0 + by2

0 + cz2
0)−m+ 2ax0x1p

k + 2by0y1p
k + 2cz0z1p

k + ax2
1p

2k + by2
1p

2k + cz2
1p

2k.
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We use (3.3) to rewrite this as

m+ `pk −m+ (2ax0x1 + 2by0y1 + 2cz0z1)pk + (ax2
1 + by2

1 + cz2
1)p2k

= (`+ 2ax0x1 + 2by0y1 + 2cz0z1)pk + (ax2
1 + by2

1 + cz2
1)p2k.

Take this modulo pk+1 to get that

(3.4) a(x0 + pkx1)2 + b(y0 + pky1)2 + c(z0 + pkz1)2 −m
≡ (`+ 2ax0x1 + 2by0y1 + 2cz0z1)pk (mod pk+1).

Let

x1 = (2ax0)−1(−`− 2by0y1 − 2cz0z1),(3.5)

where 2ax0(2ax0)−1 ≡ 1 (mod p) if and only if 2ax0(2ax0)−1 = 1 + tp for some t ∈ Z. Note
that (2ax0)−1 exists since p - 2ax0. Then use (3.5) to substitute for x1 in (3.4) to get

a(x0 + pkx1)2 + b(y0 + pky1)2 + c(z0 + pkz1)2 −m
≡ (`+ 2ax0(2ax0)−1(−`− 2by0y1 − 2cz0z1) + 2by0y1 + 2cz0z1)pk (mod pk+1).

Replace 2ax0(2ax0)−1 by 1 + tp to see that

a(x0 + pkx1)2 + b(y0 + pky1)2 + c(z0 + pkz1)2 −m
≡ (`+ (1 + tp)(−`− 2by0y1 − 2cz0z1) + 2by0y1 + 2cz0z1)pk (mod pk+1).

Expand and cancel like terms to simplify the expression to

a(x0 + pkx1)2 + b(y0 + pky1)2 + c(z0 + pkz1)2 −m ≡ t(−`− 2by0y1 − 2cz0z1)pk+1

≡ 0 (mod pk+1).

Thus, there exists a solution to Q(~v) ≡ m (mod pk+1) of the form (x0 + x1p
k, y0 + y1p

k, z0 +
z1p

k)T .
Conversely, if a(x0 + pkx1)2 + b(y0 + pky1)2 + c(z0 + pkz1)2 ≡ m (mod pk+1), then by (3.4),

we see that

(`+ 2ax0x1 + 2by0y1 + 2cz0z1)pk ≡ 0 (mod pk+1)

for some ` ∈ Z. We divide by pk to see that this is equivalent to

`+ 2ax0x1 + 2by0y1 + 2cz0z1 ≡ 0 (mod p).

Solve this congruence for x1 to get

x1 ≡ (2ax0)−1(−`− 2by0y1 − 2cz0z1) (mod p).(3.6)

Congruence (3.6) shows that x1 ∈ Z/pZ is uniquely determined by the choices of y1 and z1.
Because there are no restrictions on y1, z1 ∈ Z/pZ, there are p choices for y1 and p choices
for z1. Therefore, there are exactly p2 solutions to Q(~v) ≡ m (mod pk+1) of the form
(x0 + x1p

k, y0 + y1p
k, z0 + z1p

k)T , where x1, y1, z1 ∈ Z/pZ. �

The following corollary follows from an induction proof using Theorem 3.3. The corollary
allows us under certain conditions to state how many solutions there are in (Z/pk+`Z)3 to
Q(~v) ≡ m (mod pk+`) given the number of solutions in (Z/pkZ)3 to Q(~v) ≡ m (mod pk).
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Corollary 3.4. Let p be an odd positive prime integer. Suppose that {(x1, y1, z1)T , . . . , (xn, yn, zn)T}
is the set of the rpk,Q(m) solutions in (Z/pkZ)3 to Q(~v) ≡ m (mod pk), and suppose that
p - axj, p - byj, or p - czj for each j ∈ Z, 1 ≤ j ≤ rpk,Q(m). Then there are exactly
rpk,Q(m) ·p2` solutions in (Z/pk+`Z)3 to Q(~v) ≡ m (mod pk+`) for ` ≥ 0. Furthermore, each
of the solutions (x0, y0, z0)T in (Z/pk+`Z)3 to Q(~v) ≡ m (mod pk+`) satisfies the property
that p - ax0, p - by0, or p - cz0.

Proof. The corollary is clearly true when ` = 0.
Let n = rpk,Q(m). Assume that there are exactly np2` solutions in (Z/pk+`Z)3 to Q(~v) ≡ m

(mod pk+`) for some ` ≥ 0. Let {(x1, y1, z1)T , . . . , (xnp2` , ynp2` , znp2`)
T} be the set of the np2`

solutions in (Z/pk+`Z)3 to Q(~v) ≡ m (mod pk+`). Assume that p - axj, p - byj, or p - czj for
each j ∈ Z, 1 ≤ j ≤ np2`.

According to Theorem 3.3, for each solution (xj, yj, zj)
T in Z/pk+`Z toQ(~v) ≡ m (mod pk+`),

there exist p2 solutions to Q(~v) ≡ m (mod pk+`+1) of the form (xj +x′jp
k+`, yj + y′jp

k+`, zj +

z′jp
k+`)T , where x′j, y

′
j, z
′
j ∈ Z/pZ. Since p - axj, p - byj, or p - czj, we see that

p - a(xj + x′jp
k+`) = axj + ax′jp

k+`,

p - b(yj + y′jp
k+`) = byj + by′jp

k+`, or

p - c(zj + z′jp
k+`) = czj + cz′jp

k+`.

Let Sk+`+1,j be the set of the p2 solutions to Q(~v) ≡ m (mod pk+`+1) of the form (xj +
x′jp

k+`, yj + y′jp
k+`, zj + z′jp

k+`)T , 1 ≤ j ≤ np2`. Because

xj + x′jp
k+` ≡ xj (mod pk+`),

yj + y′jp
k+` ≡ yj (mod pk+`), and

zj + z′jp
k+`k ≡ zj (mod pk+`),

Sk+`+1,j1 ∩ Sk+`+1,j2 = ∅ for 1 ≤ j1 < j2 ≤ np2`. Therefore, there are np2` · p2 = np2(`+1)

solutions to Q(~v) ≡ m (mod pk+`+1). By the principle of mathematical induction, the
corollary follows. �

Because the sum

p−1∑
t=1

e

(
−mt
p

)
G

(
at

p

)
G

(
bt

p

)
G

(
ct

p

)
appears in the evaluation of rp,Q(m),

we prove a lemma about the sum for several cases of the coefficients a, b, c.

Lemma 3.5. If p is an odd prime, then

p−1∑
t=1

e

(
−mt
p

)
G

(
at

p

)
G

(
bt

p

)
G

(
ct

p

)
=

(
abc

p

)
ε3
pp

3/2

p−1∑
t=1

e

(
−mt
p

)(
t

p

)
, if p - abc,

p2

(
−ab
p

) p−1∑
t=1

e

(
−mt
p

)
, if p - ab and p | c,(

a

p

)
p5/2εp

p−1∑
t=1

e

(
−mt
p

)(
t

p

)
, if p - a, p | b, and p | c.
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Proof. Because t ranges between 1 and p− 1, p is coprime to t. Therefore, for any n ∈ Z, p
divides nt if and only if p divides n. By Lemma 2.11, for any n ∈ Z and 1 ≤ t ≤ p− 1, we
have

G

(
nt

p

)
=

p, if p | n,

p1/2

(
nt

p

)
εp, if p - n.

(3.7)

Suppose p divides exactly r of a, b, c. Let q be the product of the numbers in the set
{a, b, c} that are not divisible by p. Using (3.7) and the multiplicative property of the
Legendre symbol, we see that

p−1∑
t=1

e

(
−mt
p

)
G

(
at

p

)
G

(
bt

p

)
G

(
ct

p

)
=

p−1∑
t=1

e

(
−mt
p

)(
q

p

)(
p1/2

(
t

p

)
εp

)3−r

pr.

Suppose p - abc. Then q = abc, r = 0, and

p−1∑
t=1

e

(
−mt
p

)
G

(
at

p

)
G

(
bt

p

)
G

(
ct

p

)
=

p−1∑
t=1

e

(
−mt
p

)(
abc

p

)(
p1/2

(
t

p

)
εp

)3

=

(
abc

p

)
ε3
pp

3/2

p−1∑
t=1

e

(
−mt
p

)(
t

p

)2(
t

p

)

=

(
abc

p

)
ε3
pp

3/2

p−1∑
t=1

e

(
−mt
p

)(
t

p

)

since

(
t

p

)2

= 1 if p - t.

Now suppose that p - ab and p | c. Then r = 1, q = ab, and

p−1∑
t=1

e

(
−mt
p

)
G

(
at

p

)
G

(
bt

p

)
G

(
ct

p

)
=

p−1∑
t=1

e

(
−mt
p

)(
ab

p

)(
p1/2

(
t

p

)
εp

)2

p

= p2

(
ab

p

)
ε2
p

p−1∑
t=1

(
t

p

)2

e

(
−mt
p

)

= p2

(
ab

p

)
ε2
p

p−1∑
t=1

e

(
−mt
p

)

since

(
t

p

)2

= 1 if t 6≡ 0 (mod p). By Lemma 2.8,

p2

(
ab

p

)
ε2
p

p−1∑
t=1

e

(
−mt
p

)
= p2

(
ab

p

)(
−1

p

) p−1∑
t=1

e

(
−mt
p

)
.

By the multiplicative property of the Legendre symbol,

p2

(
ab

p

)(
−1

p

) p−1∑
t=1

e

(
−mt
p

)
= p2

(
−ab
p

) p−1∑
t=1

e

(
−mt
p

)
.
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Now suppose that p - a, p | b, and p | c. Then r = 2, q = a, and

p−1∑
t=1

e

(
−mt
p

)
G

(
at

p

)
G

(
bt

p

)
G

(
ct

p

)
=

p−1∑
t=1

e

(
−mt
p

)(
a

p

)
p1/2

(
t

p

)
εpp

2

=

(
a

p

)
p5/2εp

p−1∑
t=1

e

(
−mt
p

)(
t

p

)
.

�

We now use Gauss sums and Hensel’s Lemma for odd primes to find some closed-form
formulas for rpk,Q(m). We start with when p is an odd prime and p does not divide m.

Theorem 3.6. Let p be an odd prime. Suppose p - m.

rpk,Q(m) =



p2k

(
1 +

1

p

(
−abcm
p

))
, if p - abc,

p2k

(
1− 1

p

(
−ab
p

))
, if p - ab and p | c,

p2k

(
1 +

(
am

p

))
, if p - a, p | b, and p | c.

(3.8)

Proof. Because p - m, any solution (x0, y0, z0)T to Q(~v) ≡ m (mod p) has the property that
p - ax0, p - by0, or p - cz0. Therefore, Corollary 3.4 can be used once rp,Q(m) is known.

Suppose p - abc. By Lemma 3.5,

p−1∑
t=1

e

(
−mt
p

)
G

(
at

p

)
G

(
bt

p

)
G

(
ct

p

)
=

(
abc

p

)
ε3
pp

3/2

p−1∑
t=1

e

(
−mt
p

)(
t

p

)
.

By Lemma 2.4, because m 6≡ 0 (mod p),(
abc

p

)
ε3
pp

3/2

p−1∑
t=1

e

(
−mt
p

)(
t

p

)
=

(
abc

p

)
ε3
pp

3/2G

(
−m
p

)
.(3.9)

Since p - m, we can apply Lemma 2.10 and see that(
abc

p

)
ε3
pp

3/2G

(
−m
p

)
=

(
abc

p

)
ε3
pp

3/2p1/2

(
−m
p

)
εp =

(
abc

p

)(
−m
p

)
ε4
pp

2

By Lemma 2.8 and the multiplicative property of the Legendre symbol,(
abc

p

)(
−m
p

)
ε4
pp

2 =

(
−abcm
p

)
p2.

Therefore, by Corollary 3.2,

rp,Q(m) = p2 +
1

p

p−1∑
t=1

e

(
−mt
p

)
G

(
at

p

)
G

(
bt

p

)
G

(
ct

p

)
= p2 +

1

p

(
−abcm
p

)
p2 = p2

(
1 +

1

p

(
−abcm
p

))
.

The formula rpk,Q(m) = p2k

(
1 +

1

p

(
−abcm
p

))
follows from Corollary 3.4.
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Now suppose that p - ab and p | c. By Lemma 3.5,

p−1∑
t=1

e

(
−mt
p

)
G

(
at

p

)
G

(
bt

p

)
G

(
ct

p

)
= p2

(
−ab
p

) p−1∑
t=1

e

(
−mt
p

)
.

By applying Lemmas 2.3, we have

p2

(
−ab
p

) p−1∑
t=1

e

(
−mt
p

)
= p2

(
−ab
p

)
(−1) = −p2

(
−ab
p

)
.

Therefore, by Corollary 3.2,

rp,Q(m) = p2 +
1

p

p−1∑
t=1

e

(
−mt
p

)
G

(
at

p

)
G

(
bt

p

)
G

(
ct

p

)
= p2 +

1

p

(
−p2

(
−ab
p

))
= p2

(
1− 1

p

(
−ab
p

))
.

The formula rpk,Q(m) = p2k

(
1− 1

p

(
−ab
p

))
follows from Corollary 3.4.

Now suppose that p - a, p | b, and p | c. By Lemma 3.5,

p−1∑
t=1

e

(
−mt
p

)
G

(
at

p

)
G

(
bt

p

)
G

(
ct

p

)
=

(
a

p

)
p5/2εp

p−1∑
t=1

e

(
−mt
p

)(
t

p

)
.

By Lemma 2.4, (
a

p

)
p5/2εp

p−1∑
t=1

e

(
−mt
p

)(
t

p

)
=

(
a

p

)
p5/2εpG

(
−m
p

)
.

Since p - m, we can apply Lemma 2.10 and see that(
a

p

)
p5/2εpG

(
−m
p

)
=

(
a

p

)
p5/2εpp

1/2

(
−m
p

)
εp =

(
a

p

)
p3ε2

p

(
−m
p

)
.

By Lemma 2.8 and the multiplicative property of the Legendre symbol,(
a

p

)
p3ε2

p

(
−m
p

)
=

(
a

p

)
p3

(
−1

p

)(
−m
p

)
=

(
am

p

)
p3.

Therefore, by Corollary 3.2,

rp,Q(m) = p2 +
1

p

p−1∑
t=1

e

(
−mt
p

)
G

(
at

p

)
G

(
bt

p

)
G

(
ct

p

)
= p2 +

1

p

(
am

p

)
p3 = p2 + p2

(
am

p

)
= p2

(
1 +

(
am

p

))
.

The formula rpk,Q(m) = p2k

(
1 +

(
am

p

))
follows from Corollary 3.4. �

Before state the value of rpk,Q(m) when p is an odd prime and p divides m exactly, we
compute a sum of Legendre symbols. This sum is used to compute rpk,Q(m) when p is an
odd prime and p divides m exactly.
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Lemma 3.7. Let p be an odd prime. Then

p−1∑
t=0

(
t

p

)
=

p−1∑
t=1

(
t

p

)
= 0.

Proof. Because

(
0

p

)
= 0,

p−1∑
t=0

(
t

p

)
=

p−1∑
t=1

(
t

p

)
.

From Lemma 2.4 , we know that

G

(
0

p

)
=

p−1∑
t=0

(
1 +

(
t

p

))
e

(
0t

p

)
=

p−1∑
t=0

(
1 +

(
t

p

))
= p+

p−1∑
t=0

(
t

p

)
.(3.10)

On the other hand, from Lemma 2.5 we know that

G

(
0

p

)
= p.(3.11)

By setting (3.10) equal to (3.11), we see that

p+

p−1∑
t=0

(
t

p

)
= p,

which implies

p−1∑
t=0

(
t

p

)
= 0.

�

For further computations, we are concerned about computing rpk,Q(m) when k > 1. To
do this, we expand sums into sums involving (Z/pτZ)∗, where (Z/pτZ)∗ is the multiplicative
group (mod pτ ). The next lemma allows us to do this expansion.

Lemma 3.8. Let p be a prime and k be a positive integer. If f : Z → C is a periodic
function with a period of pk, then∑

t∈(Z/pkZ)\{0̄}

f(t) =

pk−1∑
t=1

f(t) =
k−1∑
τ=0

∑
t0∈(Z/pk−τZ)∗

f(t0p
τ ),

where 0̄ is the zero element of Z/pkZ.

Proof. The first equality follows from choosing coset representatives of (Z/pkZ) \ {0̄}. To
prove the lemma, we prove that each element of A = (Z/pkZ) \ {0̄} can be written uniquely
as an element of B = {t0pτ | τ ∈ Z, 0 ≤ τ ≤ k − 1, t0 ∈ (Z/pk−τZ)∗} and that B ⊆ A.

Let t ∈ A. Let pτ be the highest power of p that divides t. (Such a τ exists since t 6≡ 0
(mod pk) by the definition of A.) Since t 6≡ 0 (mod pk), we have 0 ≤ τ ≤ k − 1. Let
t0 = t/pτ . Because pτ is the highest power of p that divides t, we conclude that p - t0. This
implies that t0 ∈ (Z/pk−τZ)∗. Therefore, t = t0p

τ , where t0p
τ ∈ B.
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We need to show that t0p
τ ∈ B is unique given an element t ∈ A. Let s be a coset

representative of t. Any coset representative of t can be written as s + rpk for some r ∈ Z.
Let s1 and s2 be coset representatives of t. Then s1 = s + r1p

k and s2 = s + r2p
k. Suppose

that pτ1 is the highest power of p that divides s1. (Since pk - s1, such a τ1 exists and is
less that k.) Because pτ1 divides s1 and r1p

k, we see that pτ1 divides s. Therefore, since
pτ1 divides r2p

k, we conclude pτ1 divides s + r2p
k = s2. A similar argument shows that the

highest power of p that divides s2 also divides s1. Therefore, the highest power of p that
divides t, called pτ , is unique.

Let t1 = s1/p
τ and t2 = s2/p

τ . We want to show that t1 and t2 are coset representatives
of the same element in (Z/pk−τZ)∗. We do this by showing pk−τ divides t1 − t2. Now

t1 − t2 =
s1

pτ
− s2

pτ
=
s+ r1p

k

pτ
− s+ r2p

k

pτ
= (r1 − r2)pk−τ ,

so t1 and t2 represent the same element in (Z/pk−τZ)∗.
The final piece of this proof is to show that B ⊆ A. For any t0p

τ ∈ B such that t0 ∈
(Z/pk−τZ)∗ and 0 ≤ τ ≤ k − 1, t0p

τ is a nonzero element of Z/pkZ, so B ⊆ A. �

Now the sums involving (Z/pτZ)∗ will have to be evaluated. The following lemma allows
us to evaluate these sums.

Lemma 3.9. Let p, n, and τ be positive integers such that n ≤ τ . If f : Z/pτZ → C is a
character with a period of pτ , then

∑
t0∈(Z/pτZ)∗

f(t0) =
∑

t1∈(Z/pnZ)∗

f(t1)

pτ−n−1∑
t2=0

f(pnt2).(3.12)

If f has a period of p, then ∑
t0∈(Z/pτZ)∗

f(t0) = pτ−n
∑

t1∈(Z/pnZ)∗

f(t1).(3.13)

If p is prime, then

∑
t0∈(Z/pτZ)∗

f(t0) =

p−1∑
t1=1

f(t1)

pτ−1−1∑
t2=0

f(pt2).(3.14)

If f has a period of p and p is prime, then∑
t0∈(Z/pτZ)∗

f(t0) = pτ−1

p−1∑
t1=1

f(t1).(3.15)

Proof. Any t0 ∈ (Z/pτZ)∗ can be uniquely written as t1 + pnt2, where t1 ∈ (Z/pnZ)∗ and
0 ≤ t2 ≤ pτ−n − 1. (This is because of the uniqueness of the base-p expansion of t0.)
Therefore,

∑
t0∈(Z/pτZ)∗

f(t0) =
∑

t1∈(Z/pnZ)∗

pτ−n−1∑
t2=0

f(t1 + pnt2).
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Because f is a character with a period of pτ ,

∑
t1∈(Z/pnZ)∗

pτ−n−1∑
t2=0

f(t1 + pnt2) =
∑

t1∈(Z/pnZ)∗

pτ−n−1∑
t2=0

f(t1)f(pnt2) =
∑

t1∈(Z/pnZ)∗

f(t1)

pτ−n−1∑
t2=0

f(pnt2).

Because f : Z/pτZ → C is a character, f(0) = 1. If f has a period of p, then f(tp) =
f(0) = 1 for any t ∈ Z. Thus, if f has a period of p, then

pτ−n−1∑
t2=0

f(pt2) =

pτ−n−1∑
t2=0

1 = pτ−n

and ∑
t1∈(Z/pnZ)∗

f(t1)

pτ−n−1∑
t2=0

f(pnt2) =
∑

t1∈(Z/pnZ)∗

f(t1) · pτ−n = pτ−n
∑

t1∈(Z/pnZ)∗

f(t1).

If p is prime, the elements of (Z/pZ)∗ correspond to the elements in the set {t1 ∈ Z | 1 ≤
t1 ≤ p− 1}, so (3.14) and (3.15) follow from (3.12) and (3.13), respectively, with n = 1. �

Now that we have computed the sum of Legendre symbols and evaluated expanded sums,
we can now compute rpk,Q(m) when p is an odd prime and p divides m exactly.

Theorem 3.10. Let p be an odd prime. Suppose p ‖ m so that m = m0p for some m0 ∈ Z
and gcd(m0, p) = 1. Suppose that p - abc. Then

rpk,Q(m) =

p
2 if k = 1,

p2k

(
1− 1

p2

)
, if k ≥ 2.

Proof. For the case in which k = 1, we can apply Lemma 3.5 and see that

p−1∑
t=1

e

(
−mt
p

)
G

(
at

p

)
G

(
bt

p

)
G

(
ct

p

)
=

(
abc

p

)
ε3
pp

3/2

p−1∑
t=1

e

(
−mt
p

)(
t

p

)

=

(
abc

p

)
ε3
pp

3/2

p−1∑
t=1

e

(
−m0pt

p

)(
t

p

)

=

(
abc

p

)
ε3
pp

3/2

p−1∑
t=1

e(−m0t)

(
t

p

)

=

(
abc

p

)
ε3
pp

3/2

p−1∑
t=1

(
t

p

)
.

By Lemma 3.7, (
abc

p

)
ε3
pp

3/2

p−1∑
t=1

(
t

p

)
=

(
abc

p

)
ε3
pp

3/2 · 0 = 0.
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By Corollary 3.2,

rp,Q(m) = p2 +
1

p

p−1∑
t=1

e

(
−mt
p

)
G

(
at

p

)
G

(
bt

p

)
G

(
ct

p

)
= p2 +

1

p
· 0 = p2.

Let (x0, y0, z0)T be a solution to Q(~v) ≡ m (mod p2). Toward contradiction, assume that
p | ax0, p | by0, and p | cz0. Since p - abc, x0 = x1p, y0 = y1p, and z0 = z1p for some
x1, y1, z1 ∈ Z. Thus,

ax2
0 + by2

0 + cz2
0 = a(x1p)

2 + b(y1p)
2 + c(z1p)

2

= ax2
1p

2 + by2
1p

2 + cz2
1p

2

≡ 0 (mod p2).

However, this contradicts the fact that m 6≡ 0 (mod p2) since p ‖ m. Therefore, for any
solution (x0, y0, z0)T to Q(~v) ≡ m (mod p2), p - ax0, p - by0, or p - cz0. Thus, Corollary 3.4
can be used once rp2,Q(m) is known. In this case,

rp2,Q(m) = p4 +
1

p2

p2−1∑
t=1

e

(
−mt
p2

)
G

(
at

p2

)
G

(
bt

p2

)
G

(
ct

p2

)

= p4 +
1

p2

p2−1∑
t=1

e

(
−m0t

p

)
G

(
at

p2

)
G

(
bt

p2

)
G

(
ct

p2

)
.

By Lemma 3.8,

p2−1∑
t=1

e

(
−m0t

p

)
G

(
at

p2

)
G

(
bt

p2

)
G

(
ct

p2

)

=
1∑

τ=0

∑
t0∈(Z/p2−τZ)∗

e

(
−m0t0p

τ

p

)
G

(
at0p

τ

p2

)
G

(
bt0p

τ

p2

)
G

(
ct0p

τ

p2

)

=
∑

t0∈(Z/p2Z)∗

e

(
−m0t0
p

)
G

(
at0
p2

)
G

(
bt0
p2

)
G

(
ct0
p2

)

+
∑

t0∈(Z/pZ)∗

e(−m0t0)G

(
at0p

p2

)
G

(
bt0p

p2

)
G

(
ct0p

p2

)

=
∑

t0∈(Z/p2Z)∗

e

(
−m0t0
p

)
G

(
at0
p2

)
G

(
bt0
p2

)
G

(
ct0
p2

)
+

p−1∑
t0=1

G

(
at0p

p2

)
G

(
bt0p

p2

)
G

(
ct0p

p2

)
.



GAUSS SUMS & REPRESENTATION BY TERNARY QUADRATIC FORMS 23

We apply Lemma 2.10 to see that∑
t0∈(Z/p2Z)∗

e

(
−m0t0
p

)
G

(
at0
p2

)
G

(
bt0
p2

)
G

(
ct0
p2

)

=
∑

t0∈(Z/p2Z)∗

e

(
−m0t0
p

)
p

(
at0
p2

)
εp2p

(
bt0
p2

)
εp2p

(
ct0
p2

)
εp2

= p3
∑

t0∈(Z/p2Z)∗

e

(
−m0t0
p

)(
at0
p2

)
εp2

(
bt0
p2

)
εp2

(
ct0
p2

)
εp2 .

By Lemma 2.9, we have εp2 = 1. By the definition of the Jacobi symbol,(
at0
p2

)
=

(
at0
p

)2

=

(
bt0
p2

)
=

(
bt0
p

)2

=

(
ct0
p2

)
=

(
ct0
p

)2

= 1.

Therefore,∑
t0∈(Z/p2Z)∗

e

(
−m0t0
p

)(
at0
p2

)
εp2

(
bt0
p2

)
εp2

(
ct0
p2

)
εp2 =

∑
t0∈(Z/p2Z)∗

e

(
−m0t0
p

)
.

By Lemma 3.9, ∑
t0∈(Z/p2Z)∗

e

(
−m0t0
p

)
= p

p−1∑
t1=1

e

(
−m0t0
p

)
.

By Lemma 2.3,

p−1∑
t1=1

e

(
−m0t0
p

)
= −1.

By Lemma 2.11,

p−1∑
t0=1

G

(
at0p

p2

)
G

(
bt0p

p2

)
G

(
ct0p

p2

)
=

p−1∑
t0=1

p3/2

(
at0
p

)
εpp

3/2

(
bt0
p

)
εpp

3/2

(
ct0
p

)
εp

= p9/2ε3
p

p−1∑
t0=1

(
at0
p

)(
bt0
p

)(
ct0
p

)
.

By the multiplicative property of the Legendre symbol,

p9/2ε3
p

p−1∑
t0=1

(
at0
p

)(
bt0
p

)(
ct0
p

)
= p9/2ε3

p

(
abc

p

) p−1∑
t0=1

(
t0
p

)3

.

Because

(
t0
p

)3

=

(
t0
p

)
for any t0,

p−1∑
t0=1

(
t0
p

)3

=

p−1∑
t0=1

(
t0
p

)
.
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By Lemma 3.7,

p−1∑
t0=1

(
t0
p

)
= 0.

After a number of substitutions, we see that

rp2,Q(m) = p4 +
1

p2

(
p3 · p · (−1) + p9/2ε3

p

(
abc

p

)
· 0
)

= p4

(
1− 1

p2

)
.

The equation rpk,Q(m) = p2k

(
1− 1

p2

)
for k ≥ 2 follows from Corollary 3.4. �

From Theorem 3.6 and Theorem 3.10, we can conclude that if p is an odd prime, p - abc,
and m is square-free, then rpk,Q(m) > 0 for all k. This implies that m is locally represented
at the prime p if m is square-free and p - abc.

We now compute rpk,Q(m) when p is an odd prime, p exactly divides m, p does not divide
a or b, and p divides c.

Theorem 3.11. Let p be an odd prime. Suppose that p ‖ m, p - ab, and p | c. Let m = m0p
and c = c0p for some m0, c0 ∈ Z. Then

rp,Q(m) = p2

(
1 +

(
−ab
p

)
− 1

p

(
−ab
p

))
,

and for k ≥ 2,

rpk,Q(m) =


p2k

(
1 +

1

p

(
c0m0

p

)
+

(
−ab
p

)(
1− 1

p

))
, if p - ab and p ‖ c,

p2k

(
1− 1

p

)(
1 +

(
−ab
p

))
, if p - ab and p2 | c.

Proof. We apply Lemma 3.5 and see that

p−1∑
t=1

e

(
−mt
p

)
G

(
at

p

)
G

(
bt

p

)
G

(
ct

p

)
= p2

(
−ab
p

) p−1∑
t=1

e

(
−mt
p

)

= p2

(
−ab
p

) p−1∑
t=1

e

(
−m0pt

p

)

= p2

(
−ab
p

) p−1∑
t=1

e(−m0t)

= p2

(
−ab
p

) p−1∑
t=1

1

= p2

(
−ab
p

)
(p− 1).
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By Corollary 3.2,

rp,Q(m) = p2 +
1

p

p−1∑
t=1

e

(
−mt
p

)
G

(
at

p

)
G

(
bt

p

)
G

(
ct

p

)
= p2 +

1

p
· p2

(
−ab
p

)
(p− 1) = p2

(
1 +

(
−ab
p

)
− 1

p

(
−ab
p

))
.

Now suppose k ≥ 2, p - ab, and p ‖ c. Then gcd(c0, p) = 1. By Corollary 3.2,

rpk,Q(m) = p2k +
1

pk

pk−1∑
t=1

e

(
−mt
pk

)
G

(
at

pk

)
G

(
bt

pk

)
G

(
ct

pk

)

= p2k +
1

pk

pk−1∑
t=1

e

(
−m0pt

pk

)
G

(
at

pk

)
G

(
bt

pk

)
G

(
c0pt

pk

)

= p2k +
1

pk

pk−1∑
t=1

e

(
−m0t

pk−1

)
G

(
at

pk

)
G

(
bt

pk

)
G

(
c0pt

pk

)
.(3.16)

By Lemma 3.9,

pk−1∑
t=1

e

(
−m0t

pk−1

)
G

(
at

pk

)
G

(
bt

pk

)
G

(
c0pt

pk

)

=
k−1∑
τ=0

∑
t0∈(Z/pk−τZ)∗

e

(
−m0t0p

τ

pk−1

)
G

(
at0p

τ

pk

)
G

(
bt0p

τ

pk

)
G

(
c0pt0p

τ

pk

)

=
k−1∑
τ=0

∑
t0∈(Z/pk−τZ)∗

e

(
−m0t0
pk−τ−1

)
G

(
at0p

τ

pk

)
G

(
bt0p

τ

pk

)
G

(
c0t0p

τ+1

pk

)
.(3.17)

Let

sk,τ =
∑

t0∈(Z/pk−τZ)∗

e

(
−m0t0
pk−τ−1

)
G

(
at0p

τ

pk

)
G

(
bt0p

τ

pk

)
G

(
c0t0p

τ+1

pk

)
.

Using (3.17), substitute into (3.16) to see that

rpk,Q(m) = p2k +
1

pk

k−1∑
τ=0

sk,τ .(3.18)

First suppose that τ = k − 1. Then

sk,τ =
∑

t0∈(Z/pZ)∗

e(−m0t0)G

(
at0p

k−1

pk

)
G

(
bt0p

k−1

pk

)
G

(
c0t0p

k

pk

)

=

p−1∑
t0=1

G

(
at0p

k−1

pk

)
G

(
bt0p

k−1

pk

)
G

(
c0t0p

k

pk

)
.



26 EDNA JONES

By Lemma 2.11,

p−1∑
t0=1

G

(
at0p

k−1

pk

)
G

(
bt0p

k−1

pk

)
G

(
c0t0p

k

pk

)
=

p−1∑
t0=1

p(2k−1)/2

(
at0
p

)
εpp

(2k−1)/2

(
bt0
p

)
εpp

k

= p3k−1ε2
p

p−1∑
t0=1

(
at0
p

)(
bt0
p

)
.

By Lemma 2.8 and the multiplicative property of the Legendre symbol,

p3k−1ε2
p

p−1∑
t0=1

(
at0
p

)(
bt0
p

)
= p3k−1

(
−1

p

)(
ab

p

) p−1∑
t0=1

(
t0
p

)2

= p3k−1

(
−ab
p

) p−1∑
t0=1

(
t0
p

)2

.

Since

(
t0
p

)2

= 1 if 1 ≤ t0 ≤ p− 1, we have

p3k−1

(
−ab
p

) p−1∑
t0=1

(
t0
p

)2

= p3k−1

(
−ab
p

) p−1∑
t0=1

1 = p3k−1

(
−ab
p

)
(p− 1).

Therefore,

sk,k−1 = p3k−1

(
−ab
p

)
(p− 1).(3.19)

Now suppose that τ = k − 2. Then

sk,τ =
∑

t0∈(Z/p2Z)∗

e

(
−m0t0
p

)
G

(
at0p

k−2

pk

)
G

(
bt0p

k−2

pk

)
G

(
c0t0p

k−1

pk

)
.

By Lemma 2.11,∑
t0∈(Z/p2Z)∗

e

(
−m0t0
p

)
G

(
at0p

k−2

pk

)
G

(
bt0p

k−2

pk

)
G

(
c0t0p

k−1

pk

)

=
∑

t0∈(Z/p2Z)∗

e

(
−m0t0
p

)
p(2k−2)/2

(
at0
p2

)
εp2p

(2k−2)/2

(
bt0
p2

)
εp2p

(2k−1)/2

(
c0t0
p

)
εp

= p(6k−5)/2ε2
p2εp

∑
t0∈(Z/p2Z)∗

e

(
−m0t0
p

)(
at0
p2

)(
bt0
p2

)(
c0t0
p

)
.

By the definition of the Jacobi symbol, since at0 6≡ 0 (mod p) and bt0 6≡ 0 (mod p),(
at0
p2

)
=

(
at0
p

)2

=

(
bt0
p2

)
=

(
bt0
p

)2

= 1.

Therefore, by using the multiplicative property of the Legendre symbol, we see that

p(6k−5)/2ε2
p2εp

∑
t0∈(Z/p2Z)∗

e

(
−m0t0
p

)(
at0
p2

)(
bt0
p2

)(
c0t0
p

)
=

p(6k−5)/2ε2
p2εp

(
c0

p

) ∑
t0∈(Z/p2Z)∗

e

(
−m0t0
p

)(
t0
p

)
.
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By Lemma 2.9, εp2 = 1 and

p(6k−5)/2ε2
p2εp

(
c0

p

) ∑
t0∈(Z/p2Z)∗

e

(
−m0t0
p

)(
t0
p

)
= p(6k−5)/2εp

(
c0

p

) ∑
t0∈(Z/p2Z)∗

e

(
−m0t0
p

)(
t0
p

)
.

By Lemma 3.9,

p(6k−5)/2εp

(
c0

p

) ∑
t0∈(Z/p2Z)∗

e

(
−m0t0
p

)(
t0
p

)
= p(6k−3)/2εp

(
c0

p

) p−1∑
t1=1

e

(
−m0t1
p

)(
t1
p

)
.

By Lemma 2.4,

p(6k−3)/2εp

(
c0

p

) p−1∑
t1=1

e

(
−m0t1
p

)(
t1
p

)
= p(6k−3)/2εp

(
c0

p

)
G

(
−m0

p

)
.

By Lemma 2.10,

p(6k−3)/2εp

(
c0

p

)
G

(
−m0

p

)
= p(6k−3)/2εp

(
c0

p

)
p1/2

(
−m0

p

)
εp

= p3k−1ε2
p

(
c0

p

)(
−m0

p

)
.

By Lemma 2.8 and the multiplicative property of the Legendre symbol,

p3k−1ε2
p

(
c0

p

)(
−m0

p

)
= p3k−1

(
−1

p

)(
−c0m0

p

)
= p3k−1

(
c0m0

p

)
.

Therefore,

sk,k−2 = p3k−1

(
c0m0

p

)
.(3.20)

Now suppose that 0 ≤ τ < k − 2. Then, by Lemma 2.11,

sk,τ =
∑

t0∈(Z/pk−τZ)∗

e

(
−m0t0
pk−τ−1

)
G

(
at0p

τ

pk

)
G

(
bt0p

τ

pk

)
G

(
c0t0p

τ+1

pk

)

=
∑

t0∈(Z/pk−τZ)∗

e

(
−m0t0
pk−τ−1

)
pk+τ

(
at0
pk−τ

)
ε2
pk−τ

(
bt0
pk−τ

)
p(k+τ+1)/2

(
c0t0
pk−τ−1

)
εpk−τ−1

= p(3k+3τ+1)/2ε2
pk−τ εpk−τ−1

∑
t0∈(Z/pk−τZ)∗

e

(
−m0t0
pk−τ−1

)(
at0
pk−τ

)(
bt0
pk−τ

)(
c0t0
pk−τ−1

)
.

By Lemma 2.8 and the definition of the Jacobi symbol,

p(3k+3τ+1)/2ε2
pk−τ εpk−τ−1

∑
t0∈(Z/pk−τZ)∗

e

(
−m0t0
pk−τ−1

)(
at0
pk−τ

)(
bt0
pk−τ

)(
c0t0
pk−τ−1

)

= p(3k+3τ+1)/2

(
−1

pk−τ

)(
ab

pk−τ

)
εpk−τ−1

∑
t0∈(Z/pk−τZ)∗

e

(
−m0t0
pk−τ−1

)(
t0
pk−τ

)2(
c0t0
pk−τ−1

)

= p(3k+3τ+1)/2

(
−ab
pk−τ

)
εpk−τ−1

(
c0

pk−τ−1

) ∑
t0∈(Z/pk−τZ)∗

e

(
−m0t0
pk−τ−1

)(
t0
pk−τ

)2(
t0
p

)k−τ−1

.
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Because t0 ∈ (Z/pk−τZ)∗,

(
t0
pk−τ

)2

= 1 and

∑
t0∈(Z/pk−τZ)∗

e

(
−m0t0
pk−τ−1

)(
t0
pk−τ

)2(
t0
p

)k−τ−1

=
∑

t0∈(Z/pk−τZ)∗

e

(
−m0t0
pk−τ−1

)(
t0
p

)k−τ−1

.

By Lemma 3.9,∑
t0∈(Z/pk−τZ)∗

e

(
−m0t0
pk−τ−1

)(
t0
p

)k−τ−1

=

p−1∑
t1=1

e

(
−m0t1
pk−τ−1

)(
t1
p

)k−τ−1 p
τ−1−1∑
t2=0

e

(
−m0t2p

pk−τ−1

)(
t2p

p

)k−τ−1

.

Because

(
t2p

p

)
= 0 for any t2 ∈ Z,

p−1∑
t1=1

e

(
−m0t1
pk−τ−1

)(
t1
p

)k−τ−1 p
τ−1−1∑
t2=0

e

(
−m0t2p

pk−τ−1

)(
t2p

p

)k−τ−1

=

p−1∑
t1=1

e

(
−m0t1
pk−τ−1

)(
t1
p

)k−τ−1 p
τ−1−1∑
t2=0

e

(
−m0t2p

pk−τ−1

)
· 0k−τ−1 = 0.

Therefore, if 0 ≤ τ < k − 2, then

sk,τ = p(3k+3τ+1)/2

(
−ab
pk−τ

)
εpk−τ−1

(
c0

pk−τ−1

)
· 0 = 0.(3.21)

Using (3.19), (3.20), and (3.21), substitute into (3.18) to find that

rpk,Q(m) = p2k +
1

pk

(
sk,k−1 + sk,k−2 +

k−3∑
τ=0

sk,τ

)

= p2k +
1

pk

(
p3k−1

(
−ab
p

)
(p− 1) + p3k−1

(
c0m0

p

)
+

k−3∑
τ=0

0

)

= p2k

(
1 +

1

p

(
c0m0

p

)
+

(
−ab
p

)(
1− 1

p

))
.

Now suppose k ≥ 2, p - ab, and p2 | c. Let (x0, y0, z0)T be a solution to Q(~x) ≡ m
(mod p2). Let c = c1p

2 for some c1 ∈ Z. Toward contradiction, assume that p | ax0, p | by0,
and p | cz0. Since p - ab, x0 = x1p and y0 = y1p for some x1, y1,∈ Z. Thus,

ax2
0 + by2

0 + cz2
0 = a(x1p)

2 + b(y1p)
2 + c1p

2z2
0

= ax2
1p

2 + by2
1p

2 + cz2
0p

2

≡ 0 (mod p2).

However, this contradicts the fact that m 6≡ 0 (mod p2) since p ‖ m. Therefore, for any
solution (x0, y0, z0)T to Q(~x) ≡ m (mod p2), p - ax0, p - by0, or p - cz0. Thus, Corollary 3.4
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can be used once rp2,Q(m) is known. In this case, by Corollary 3.2,

rp2,Q(m) = p4 +
1

p2

p2−1∑
t=1

e

(
−mt
p2

)
G

(
at

p2

)
G

(
bt

p2

)
G

(
ct

p2

)

= p4 +
1

p2

p2−1∑
t=1

e

(
−m0t

p

)
G

(
at

p2

)
G

(
bt

p2

)
G

(
c1p

2t

p2

)
.(3.22)

By Lemma 2.11,

p2−1∑
t=1

e

(
−m0t

p

)
G

(
at

p2

)
G

(
bt

p2

)
G

(
c1p

2t

p2

)
=

p2−1∑
t=1

e

(
−m0t

p

)
G

(
at

p2

)
G

(
bt

p2

)
p2

= p2

p2−1∑
t=1

e

(
−m0t

p

)
G

(
at

p2

)
G

(
bt

p2

)
.(3.23)

By Lemma 3.8,

(3.24)

p2−1∑
t=1

e

(
−m0t

p

)
G

(
at

p2

)
G

(
bt

p2

)

=
1∑

τ=0

∑
t0∈(Z/p2−τZ)∗

e

(
−m0t0p

τ

p

)
G

(
at0p

τ

p2

)
G

(
bt0p

τ

p2

)
.

Suppose that τ = 0. Then∑
t0∈(Z/p2−τZ)∗

e

(
−m0t0p

τ

p

)
G

(
at0p

τ

p2

)
G

(
bt0p

τ

p2

)
=

∑
t0∈(Z/p2Z)∗

e

(
−m0t0
p

)
G

(
at0
p2

)
G

(
bt0
p2

)
.

By Lemma 2.10,∑
t0∈(Z/p2Z)∗

e

(
−m0t0
p

)
G

(
at0
p2

)
G

(
bt0
p2

)
=

∑
t0∈(Z/p2Z)∗

e

(
−m0t0
p

)
p

(
at0
p2

)
εp2p

(
bt0
p2

)
εp2

= p2ε2
p2

∑
t0∈(Z/p2Z)∗

e

(
−m0t0
p

)(
at0
p2

)(
bt0
p2

)
.

By Lemma 2.9, εp2 = 1, so

p2ε2
p2

∑
t0∈(Z/p2Z)∗

e

(
−m0t0
p

)(
at0
p2

)(
bt0
p2

)
= p2

∑
t0∈(Z/p2Z)∗

e

(
−m0t0
p

)(
at0
p2

)(
bt0
p2

)
.

By the definition of the Jacobi symbol,

p2
∑

t0∈(Z/p2Z)∗

e

(
−m0t0
p

)(
at0
p2

)(
bt0
p2

)
= p2

∑
t0∈(Z/p2Z)∗

e

(
−m0t0
p

)(
at0
p

)2(
bt0
p

)2

.
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Since p - at0 and p - bt0,

(
at0
p

)2

=

(
bt0
p

)2

= 1, so

p2
∑

t0∈(Z/p2Z)∗

e

(
−m0t0
p

)(
at0
p

)2(
bt0
p

)2

= p2
∑

t0∈(Z/p2Z)∗

e

(
−m0t0
p

)
.

By Lemma 3.9,

p2
∑

t0∈(Z/p2Z)∗

e

(
−m0t0
p

)
= p3

p−1∑
t1=1

e

(
−m0t1
p

)
.

By Lemma 2.3,

p3

p−1∑
t1=1

e

(
−m0t1
p

)
= −p3.

Therefore, if τ = 0, then∑
t0∈(Z/p2−τZ)∗

e

(
−m0t0p

τ

p

)
G

(
at0p

τ

p2

)
G

(
bt0p

τ

p2

)
= −p3.(3.25)

Suppose τ = 1. Then∑
t0∈(Z/p2−τZ)∗

e

(
−m0t0p

τ

p

)
G

(
at0p

τ

p2

)
G

(
bt0p

τ

p2

)
=

∑
t0∈(Z/pZ)∗

e

(
−m0t0p

p

)
G

(
at0p

p2

)
G

(
bt0p

p2

)

=

p−1∑
t0=1

e(−m0t0)G

(
at0p

p2

)
G

(
bt0p

p2

)

=

p−1∑
t0=1

G

(
at0p

p2

)
G

(
bt0p

p2

)
.

By Lemma 2.11,

p−1∑
t0=1

G

(
at0p

p2

)
G

(
bt0p

p2

)
=

p−1∑
t0=1

p3/2

(
at0
p

)
εpp

3/2

(
bt0
p

)
εp

= p3ε2
p

p−1∑
t0=1

(
at0
p

)(
bt0
p

)
.

By applying Lemma 2.8 and the multiplicative property of the Legendre symbol, we have

p3ε2
p

p−1∑
t0=1

(
at0
p

)(
bt0
p

)
= p3

(
−1

p

)(
ab

p

) p−1∑
t0=1

(
t0
p

)2

= p3

(
−ab
p

) p−1∑
t0=1

(
t0
p

)2

.

Since t0 6≡ 0 (mod p) if 1 ≤ t0 ≤ p− 1,

(
t0
p

)2

= 1 and

p3

(
−ab
p

) p−1∑
t0=1

(
t0
p

)2

= p3

(
−ab
p

) p−1∑
t0=1

1 = p3

(
−ab
p

)
(p− 1).
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Thus, if τ = 1, then∑
t0∈(Z/p2−τZ)∗

e

(
−m0t0p

τ

p

)
G

(
at0p

τ

p2

)
G

(
bt0p

τ

p2

)
= p3

(
−ab
p

)
(p− 1).(3.26)

After using (3.23), (3.24), (3.25), and (3.26) to substitute into (3.22), we see that

rp2,Q(m) = p4 +
1

p2
p2

(
−p3 + p3

(
−ab
p

)
(p− 1)

)
= p4

(
1− 1

p

)(
1 +

(
−ab
p

))
.

Therefore, if k ≥ 2, p - ab, and p2 | c, we apply Corollary 3.4 and see that

rpk,Q(m) = p2k

(
1− 1

p

)(
1 +

(
−ab
p

))
.

�

Combined with Theorems 3.6 and 3.10, Theorem 3.11 allows us to determine if a square-
free integer m is locally represented at the odd prime p given that a, b, and c are pairwise
coprime.

The next formula we have for rpk,Q(m) concerns the case in which p exactly divides m, p
does not divide a, and p2 divides b and c.

Theorem 3.12. Let p be a prime. If p ‖ m, p - a, p2 | b and p2 | c, then

rpk,Q(m) =

{
p2 if k = 1,

0, if k ≥ 2.

Proof. Because p divides b, c, and m, a solution to the congruence Q(~v) = ax2+by2+cz2 ≡ m
(mod p) would satisfy ax2 ≡ 0 (mod p). Since a 6≡ 0 (mod p), this implies x2 ≡ 0 (mod p).
Because p is prime, we see that p divides x, i.e., x = x0p for some x0 ∈ Z and x ≡ 0 (mod p).
Therefore, at k = 1, x must be congruent to 0 (mod p), and y and z are free to be anything
in Z/pZ. This gives p2 solutions to Q(~v) ≡ m (mod p), where ~v ∈ (Z/pZ)3.

Furthermore, because p2 | b and p2 | c,

Q(~v) = ax2 + by2 + cz2 = a(x0p)
2 + by2 + cz2 ≡ 0 (mod p2).

However, since p ‖ m, m 6≡ 0 (mod p2). Therefore, there are no solutions toQ(~v) ≡ m (mod p2)
if p2 | b and p2 | c. This makes it impossible to have solutions for Q(~v) ≡ m (mod pk) for
k ≥ 2 if p2 | b and p2 | c, so rpk,Q(m) = 0 for k ≥ 2 if p2 | b and p2 | c. �

So far in this section we have focused on computing rpk,Q(m) when p is an odd prime. For
the remainder of this section we consider rpk,Q(m) when p = 2. Before we can develop closed-
form formulas for r2k,Q(m). We state a theorem similar to Theorem 3.3 that is applicable to
powers of 2.

Theorem 3.13 (Hensel’s Lemma for powers of 2). Let m be an integer. Suppose ~v0 =
(x0, y0, z0)T is a solution to Q(~v) ≡ m (mod 2k) for some k ≥ 3. If 2 - ax0, 2 - by0, or
2 - cz0, then there are exactly 32 solutions to Q(~v) ≡ m (mod 2k+1) of the form (x0 +
2k−1x1, y0 + 2k−1y1, z0 + 2k−1z1)T , where x1, y1, z1 ∈ Z/4Z.
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Proof. Without loss of generality, assume that 2 - ax0.
We first prove that there exists a solution to Q(~v) ≡ m (mod 2k+1) of the form (x0 +

x12k−1, y0 + y12k−1, z0 + z12k−1)T . Because Q(~v0) ≡ m (mod 2k), there exists ` ∈ Z such
that

ax2
0 + by2

0 + cz2
0 = m+ 2k`.(3.27)

For any x1, y1, z1 ∈ Z/4Z, we expand

a(x0 + 2k−1x1)2 + b(y0 + 2k−1y1)2 + c(z0 + 2k−1z1)2 −m
to obtain

ax2
0 + 2kax0x1 + 22k−2ax2

1 + by2
0 + 2kby0y1 + 22k−2by2

1 + cz2
0 + 2kcz0z1 + 22k−2cz2

1 −m.
By rearranging terms in the last expression, we have

(ax2
0 + by2

0 + cz2
0)−m+ 2kax0x1 + 2kby0y1 + 2kcz0z1 + 22k−2ax2

1 + 22k−2by2
1 + 22k−2cz2

1 .

We use (3.27) to rewrite this as

(3.28) m+ 2k`−m+ 2kax0x1 + 2kby0y1 + 2kcz0z1 + 22k−2ax2
1 + 22k−2by2

1 + 22k−2cz2
1

= 2k(`+ ax0x1 + by0y1 + cz0z1) + 22k−2(ax2
1 + by2

1 + cz2
1).

Because k ≥ 3, 22k−2 ≥ 2k+1, so when we take (3.28) modulo 2k+1, we get

(3.29) a(x0 + 2k−1x1)2 + b(y0 + 2k−1y1)2 + c(z0 + 2k−1z1)2 −m
≡ 2k(`+ ax0x1 + by0y1 + cz0z1) (mod 2k+1).

Let

x1 = (ax0)−1(−`− by0y1 − cz0z1),(3.30)

where ax0(ax0)−1 ≡ 1 (mod 2) if and only if 2ax0(2ax0)−1 = 1 + 2t for some t ∈ Z. Note
that (ax0)−1 exists since 2 - ax0. Then use (3.30) to substitute for x1 in (3.29) to get

a(x0 + 2k−1x1)2 + b(y0 + 2k−1y1)2 + c(z0 + 2k−1z1)2 −m
≡ 2k(`+ ax0(ax0)−1(−`− by0y1 − cz0z1) + by0y1 + cz0z1) (mod 2k+1).

Replace ax0(ax0)−1 by 1 + 2t to see that

a(x0 + 2k−1x1)2 + b(y0 + 2k−1y1)2 + c(z0 + 2k−1z1)2 −m
≡ 2k(`+ (1 + 2t)(−`− by0y1 − cz0z1) + by0y1 + cz0z1) (mod 2k+1).

Expand and cancel like terms to simplify the expression to

a(x0 + 2k−1x1)2 + b(y0 + 2k−1y1)2 + c(z0 + 2k−1z1)2 −m ≡ 2k+1t(−`− 2by0y1 − 2cz0z1)

≡ 0 (mod 2k+1).

Thus, there exists a solution to Q(~v) ≡ m (mod 2k+1) of the form (x0 + x12k−1, y0 +
y12k−1, z0 + z12k−1)T .

Conversely, if a(x0 + 2k−1x1)2 + b(y0 + 2k−1y1)2 + c(z0 + 2k−1z1)2 ≡ m (mod 2k+1), then
by using (3.29), we see that

2k(`+ ax0x1 + by0y1 + cz0z1) ≡ 0 (mod 2k+1)
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for some ` ∈ Z. We divide by 2k to see that this is equivalent to

`+ ax0x1 + by0y1 + cz0z1 ≡ 0 (mod 2).

Solve this congruence for x1 to get

x1 ≡ (ax0)−1(−`− by0y1 − cz0z1) (mod 2).(3.31)

Congruence (3.31) shows that x1 ∈ Z/4Z is determined (mod 2) by the choices of y1 and
z1. Since x1 ∈ Z/4Z, there are exactly 2 choices for x1 once y1 and z1 have been chosen.
Because there are no restrictions on y1, z1 ∈ Z/4Z, there are 4 choices for y1 and 4 choices
for z1. Therefore, there are exactly 32 solutions to Q(~v) ≡ m (mod 2k+1) of the form
(x0 + 2k−1x1, y0 + 2k−1y1, z0 + 2k−1z1)T , where x1, y1, z1 ∈ Z/4Z. �

The next corollary is similar to Corollary 3.4. The corollary allows us under certain
conditions to state how many solutions there are in (Z/2k+`Z)3 to Q(~v) ≡ m (mod 2k+`)
given the number of solutions in (Z/2kZ)3 to Q(~v) ≡ m (mod 2k).

Corollary 3.14. Let k ≥ 3. Suppose that {(x1, y1, z1)T , . . . , (xn, yn, zn)T} is the set of the
n = r2k,Q(m) solutions in (Z/2kZ)3 to Q(~v) ≡ m (mod 2k), and suppose that 2 - axj, 2 - byj,
or 2 - czj for each j ∈ Z, 1 ≤ j ≤ r2k,Q(m). Then there are exactly r2k,Q(m) · 22` solutions
in (Z/2k+`Z)3 to Q(~v) ≡ m (mod 2k+`) for ` ≥ 0. Furthermore, each of the solutions
(x0, y0, z0)T in (Z/2k+`Z)3 to Q(~v) ≡ m (mod 2k+`) satisfies the property that 2 - ax0,
2 - by0, or 2 - cz0.

Proof. The corollary is clearly true when ` = 0.
Let n = r2k,Q(m). Assume that there are exactly 22`n solutions in (Z/2k+`Z)3 to Q(~v) ≡ m

(mod 2k+`) for some ` ≥ 0. Let {(x1, y1, z1)T , . . . , (x22`n, y22`n, z22`n)T} be the set of the 22`n
solutions in (Z/2k+`Z)3 to Q(~v) ≡ m (mod 2k+`). Assume that p - axj, p - byj, or p - czj for
each j ∈ Z, 1 ≤ j ≤ 22`n.

According to Theorem 3.13, for each solution (xj, yj, zj)
T in Z/2k+`Z to Q(~v) ≡ m

(mod 2k+`), there exist 32 solutions toQ(~v) ≡ m (mod 2k+`+1) of the form (xj+2k+`−1x′j, yj+

2k+`−1y′j, zj + 2k+`−1z′j)
T , where x′j, y

′
j, z
′
j ∈ Z/4Z. Since 2 - axj, 2 - byj, or 2 - czj, we see

that

2 - a(xj + 2k+`−1x′j) = axj + 2k+`ax′j,

2 - b(yj + 2k+`−1y′j) = byj + 2k+`by′j, or

2 - c(zj + 2k+`−1z′j) = czj + 2k+`cz′j.

Let 1 ≤ j1, j2 ≤ 22`n. Suppose that

xj1 + 2k+`−1x′j1 ≡ xj2 + 2k+`−1x′j2 (mod 2k+`+1),(3.32)

yj1 + 2k+`−1y′j1 ≡ yj2 + 2k+`−1y′j2 (mod 2k+`+1), and

zj1 + 2k+`−1z′j1 ≡ zj2 + 2k+`−1z′j2 (mod 2k+`+1).

Congruence (3.32) implies that

(xj1 − xj2) + 2k+`−1(x′j1 − x
′
j2

) ≡ 0 (mod 2k+`+1),

which is equivalent to saying that

(xj1 − xj2) + 2k+`−1(x′j1 − x
′
j2

) = 2k+`+1t
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for some t ∈ Z. Since 2k+`−1 divides 2k+`−1(x′j1 − x
′
j2

) and 2k+`+1t, we have 2k+`−1 divides
xj1 − xj2 and

xj1 ≡ xj2 (mod 2k+`−1).

As shown in a similar manner, yj1 ≡ yj2 (mod 2k+`−1) and zj1 ≡ zj2 (mod 2k+`−1).
Conversely, suppose that

xj1 ≡ xj2 (mod 2k+`−1),

yj1 ≡ yj2 (mod 2k+`−1), and

zj1 ≡ zj2 (mod 2k+`−1).

Then there exists tx, ty, tz ∈ Z so that

xj1 = xj2 + 2k+`−1tx,

yj1 = yj2 + 2k+`−1ty, and

zj1 = zj2 + 2k+`−1tz.

Let Sk+`+1,j be the set of the 32 solutions to Q(~v) ≡ m (mod pk+`+1) of the form (xj +
2k+`−1x′j, yj+2k+`−1y′j, zj+2k+`−1z′j)

T , 1 ≤ j ≤ 22`n. Let (xj1 +2k+`−1x′j1 , yj1 +2k+`−1y′j1 , zj1 +

2k+`−1z′j1)
T ∈ Sk+`+1,j1 . Observe that

xj1 + 2k+`−1x′j1 = xj2 + 2k+`−1tx + 2k+`−1x′j1 = xj2 + 2k+`−1(tx + x′j1),

yj1 + 2k+`−1y′j1 = yj2 + 2k+`−1ty + 2k+`−1y′j1 = yj2 + 2k+`−1(ty + y′j1), and

zj1 + 2k+`−1z′j1 = zj2 + 2k+`−1tz + 2k+`−1z′j1 = zj2 + 2k+`−1(tz + z′j1).

Therefore, (xj1 + 2k+`−1x′j1 , yj1 + 2k+`−1y′j1 , zj1 + 2k+`−1z′j1)
T ∈ Sk+`+1,j2 , and Sk+`+1,j1 ⊆

Sk+`+1,j2 . It can be shown in a similar manner that Sk+`+1,j2 ⊆ Sk+`+1,j1 , so Sk+`+1,j1 =
Sk+`+1,j2 .

To summarize, if 1 ≤ j1, j2 ≤ 22`n, then

Sk+`+1,j1 ∩ Sk+`+1,j2 ={
Sk+`+1,j1 = Sk+`+1,j2 , if xj1 − xj2 ≡ yj1 − yj2 ≡ zj1 − zj2 ≡ 0 (mod 2k+`−1),

∅, otherwise.

Given a solution in (xj1 , yj1 , zj1)
T in (Z/2k+`Z)3, there are only 2 choices for in xj2 ∈

Z/2k+`Z where xj2 ≡ xj1 (mod 2k+`−1), only 2 choices for in yj2 ∈ Z/2k+`Z where yj2 ≡ yj1
(mod 2k+`−1), and only 2 choices for in zj2 ∈ Z/2k+`Z where zj2 ≡ zj1 (mod 2k+`−1). Thus,
there are 8 solutions in (Z/2k+`Z)3 of the form (xj, yj, zj)

T such that Sk+`+1,j = Sk+`+1,j1 .
This means that every solution to Q(~v) ≡ m (mod 2k+1) of the form (xj + 2k−1x′j, yj +

2k−1y′j, zj + 2k−1z′j)
T is counted 8 times. Therefore, there are 22`n · 32

8
= 22`n · 22 = 22(`+1)n

solutions to Q(~v) ≡ m (mod 2k+`+1). By the principle of mathematical induction, the
corollary follows. �

Before computing r2k,Q(m), we define w, κw, and λw for the quadratic form Q(~v) =
ax2 + by2 + cz2. Define w to be the number of elements in {a, b, c} that are congruent to
3 (mod 4), κw = 4(−w2 + 3w − 1), and λw = 4 · (−1)bw/2c. The next lemma relates κw and
λw to ρa, ρb, and ρc.
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Lemma 3.15. For the quadratic form Q(~v) = ax2 + by2 + cz2,

κw = 2Re(ρaρbρc) = ρaρbρc + ρ̄aρ̄bρ̄c

and

λw = 2Im(ρaρbρc) = −iρaρbρc + iρ̄aρ̄bρ̄c.

Proof. We begin this proof by computing products of 1 + i and 1− i. We have

(1 + i)2 = 1 + 2i+ i2 = 1 + 2i+ (−1) = 2i, and(3.33)

(1− i)2 = 1− 2i+ i2 = 1− 2i+ (−1) = −2i.(3.34)

We also notice that ρaρbρc = ρ̄aρ̄bρ̄c. Furthermore, for any u ∈ C,

u+ ū = (Re(u) + iIm(u)) + (Re(u)− iIm(u)) = 2Re(u),

so 2Re(ρaρbρc) = ρaρbρc + ρ̄aρ̄bρ̄c. Also, for any u ∈ C,

−iu+ iū = −i(Re(u) + iIm(u)) + i(Re(u)− iIm(u))

= −iRe(u)− i2Im(u) + iRe(u)− i2Im(u) = 2Im(u),

so 2Im(ρaρbρc) = −iρaρbρc + iρ̄aρ̄bρ̄c.
For any odd integer q,

ρq =

{
1 + i, if q ≡ 1 (mod 4),

1− i, if q ≡ 3 (mod 4),

so

ρaρbρc = (1 + i)3−w(1− i)w.

Suppose that w = 0. Then κw = 4(−02 + 3 · 0 − 1) = −4 and λw = 4 · (−1)b0/2c = 4.
Furthermore,

ρaρbρc = (1 + i)3−0(1− i)0 = (1 + i)3 = (1 + i)2(1 + i).

Use (3.33) to substitute into the last equation to see that

ρaρbρc = 2i(1 + i) = 2i+ 2i2 = −2 + 2i,

so 2Re(ρaρbρc) = −4 and 2Im(ρaρbρc) = 4. Therefore, if w = 0, κw = 2Re(ρaρbρc) and
λw = 2Im(ρaρbρc).

Suppose that w = 1. Then κw = 4(−12 + 3 · 1 − 1) = 4 and λw = 4 · (−1)b1/2c = 4.
Furthermore,

ρaρbρc = (1 + i)3−1(1− i)1 = (1 + i)2(1− i).

Use (3.33) to substitute into the last equation to see that

ρaρbρc = 2i(1− i) = 2i− 2i2 = 2 + 2i,

so 2Re(ρaρbρc) = 4 and 2Im(ρaρbρc) = 4. Therefore, if w = 1, κw = 2Re(ρaρbρc) and
λw = 2Im(ρaρbρc).

Suppose that w = 2. Then κw = 4(−22 + 3 · 2 − 1) = 4 and λw = 4 · (−1)b2/2c = −4.
Furthermore,

ρaρbρc = (1 + i)3−2(1− i)2 = (1 + i)(1− i)2.
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Use (3.34) to substitute into the last equation to see that

ρaρbρc = (1 + i)(−2i) = −2i− 2i2 = 2− 2i,

so 2Re(ρaρbρc) = 4 and 2Im(ρaρbρc) = −4. Therefore, if w = 2, κw = 2Re(ρaρbρc) and
λw = 2Im(ρaρbρc).

Suppose that w = 3. Then κw = 4(−32 + 3 · 3 − 1) = −4 and λw = 4 · (−1)b3/2c = −4.
Furthermore,

ρaρbρc = (1 + i)3−3(1− i)3 = (1− i)3 = (1− i)2(1− i).
Use (3.34) to substitute into the last equation to see that

ρaρbρc = (−2i)(1− i) = −2i+ 2i2 = −2− 2i,

so 2Re(ρaρbρc) = −4 and 2Im(ρaρbρc) = −4. Therefore, if w = 3, κw = 2Re(ρaρbρc) and
λw = 2Im(ρaρbρc). �

Using κw and λw, the next theorem computes r2k,Q(m) when m is square-free and a, b,
and c are odd.

Theorem 3.16. Suppose 2 - abc. Then

r2,Q(m) = 4

and

r22,Q(m) =

{
24 + 2(−1)bm/2cκw, if m ≡ 0 (mod 2),

24 + 2(−1)bm/2cλw, otherwise.

If k ≥ 3,

r2k,Q(m) =


22k

(
1 +

1

16

(
2

abcm

)(
κw + λw

(
−1

m

))
+

1

8
λw

(
−1

m

))
, if 2 - m,

22k

(
1− 1

8
κw

)
, if 2 ‖ m.

Proof. For any k ≥ 1, by Corollary 3.2, we have

r2k,Q(m) = 22k +
1

2k

2k−1∑
t=1

e

(
−mt
2k

)
G

(
at

2k

)
G

(
bt

2k

)
G

(
ct

2k

)
.(3.35)

By Lemma 2.12, G
(a

2

)
= G

(
b

2

)
= G

( c
2

)
= 0, so by (3.35),

r2,Q(m) = r21,Q(m) = 22 +
1

2

2−1∑
t=1

e

(
−mt

2

)
G

(
at

2

)
G

(
bt

2

)
G

(
ct

2

)

= 4 +
1

2

2−1∑
t=1

e

(
−mt

2

)
· 0 · 0 · 0 = 4.

Now suppose that k ≥ 2. Using Lemma 3.8, (3.35) is equivalent to

r2k,Q(m) = 22k +
1

2k

k−1∑
τ=0

∑
t0∈(Z/2k−τZ)∗

e

(
−mt02τ

2k

)
G

(
at02τ

2k

)
G

(
bt02τ

2k

)
G

(
ct02τ

2k

)
.
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Let

sk,τ =
∑

t0∈(Z/2k−τZ)∗

e

(
−mt02τ

2k

)
G

(
at02τ

2k

)
G

(
bt02τ

2k

)
G

(
ct02τ

2k

)
so that

r2k,Q(m) = 22k +
1

2k

k−1∑
τ=0

sk,τ .(3.36)

Suppose that τ = k − 1. Then

sk,τ =
∑

t0∈(Z/2k−τZ)∗

e

(
−mt02k−1

2k

)
G

(
at02k−1

2k

)
G

(
bt02k−1

2k

)
G

(
ct02k−1

2k

)
.

By Lemma 2.15, G

(
at02k−1

2k

)
= G

(
bt02k−1

2k

)
= G

(
ct02k−1

2k

)
= 0, so

sk,k−1 =
∑

t0∈(Z/pk−τZ)∗

e

(
−mt02k−1

2k

)
· 0 · 0 · 0 = 0.(3.37)

Suppose τ ≤ k − 2. Because τ ≤ k − 2, we apply Lemma 2.15 and see that

sk,τ =
∑

t0∈(Z/2k−τZ)∗

e

(
−mt0
2k−τ

)
2(k+τ)/2

(
2k−τ

at0

)
ρat02

(k+τ)/2

(
2k−τ

bt0

)
ρbt02

(k+τ)/2

(
2k−τ

ct0

)
ρct0

= 23(k+τ)/2
∑

t0∈(Z/2k−τZ)∗

e

(
−mt0
2k−τ

)(
2k−τ

at0

)
ρat0

(
2k−τ

bt0

)
ρbt0

(
2k−τ

ct0

)
ρct0 .

By the definition of the Jacobi symbol,

sk,τ = 23(k+τ)/2

(
2k−τ

abc

) ∑
t0∈(Z/2k−τZ)∗

e

(
−mt0
2k−τ

)(
2k−τ

t0

)3

ρat0ρbt0ρct0 .

Because 2 - t0,

(
2k−τ

t0

)3

=

(
2k−τ

t0

)
and

sk,τ = 23(k+τ)/2

(
2k−τ

abc

) ∑
t0∈(Z/2k−τZ)∗

e

(
−mt0
2k−τ

)(
2k−τ

t0

)
ρat0ρbt0ρct0 .

Let t0 = t1 + 4t2, where t1 ∈ {1, 3} and 0 ≤ t2 ≤ 2k−τ−2 − 1. Then

sk,τ = 23(k+τ)/2

(
2k−τ

abc

) ∑
t1∈{1,3}

2k−τ−2−1∑
t2=0

e

(
−m(t1 + 4t2)

2k−τ

)(
2k−τ

t1 + 4t2

)
ρa(t1+4t2)ρb(t1+4t2)ρc(t1+4t2)

= 23(k+τ)/2

(
2k−τ

abc

) 2k−τ−2−1∑
t2=0

[
e

(
−m
2k−τ

)
e

(
−4mt2
2k−τ

)(
2k−τ

1 + 4t2

)
ρa(1+4t2)ρb(1+4t2)ρc(1+4t2)

+ e

(
−3m

2k−τ

)
e

(
−4mt2
2k−τ

)(
2k−τ

3 + 4t2

)
ρa(3+4t2)ρb(3+4t2)ρc(3+4t2)

]
.
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By Lemma 2.13 and some rearranging of terms,

(3.38) sk,τ = 23(k+τ)/2

(
2k−τ

abc

) 2k−τ−2−1∑
t2=0

e

(
−4mt2
2k−τ

)[
e

(
−m
2k−τ

)(
2k−τ

1 + 4t2

)
ρaρbρc

+ e

(
−3m

2k−τ

)(
2k−τ

3 + 4t2

)
ρ̄aρ̄bρ̄c

]
.

When k − τ = 2 (i.e., τ = k − 2),

sk,τ = 23k−3

(
22

abc

)
e

(
−4mt2

22

)[
e

(
−m
22

)(
22

1 + 4t2

)
ρaρbρc

+ e

(
−3m

22

)(
22

3 + 4t2

)
ρ̄aρ̄bρ̄c

]
.

= 23k−3

(
22

abc

)[
e

(
−m

4

)(
22

1 + 4t2

)
ρaρbρc + e

(
−3m

4

)(
22

3 + 4t2

)
ρ̄aρ̄bρ̄c

]
.

By the multiplicative property of the Jacobi symbol,(
22

abc

)
=

(
2

abc

)2

=

(
22

1 + 4t2

)
=

(
2

1 + 4t2

)2

=

(
22

3 + 4t2

)
=

(
2

3 + 4t2

)2

= 1,

so

sk,k−2 = 23k−3

[
e

(
−m

4

)
ρaρbρc + e

(
−3m

4

)
ρ̄aρ̄bρ̄c

]
.

If m ≡ 0 (mod 4), then

sk,k−2 = 23k−3

[
e

(
−0

4

)
ρaρbρc + e

(
−3 · 0

4

)
ρ̄aρ̄bρ̄c

]
= 23k−3 · 1 · [ρaρbρc + ρ̄aρ̄bρ̄c]

= 23k−3(−1)bm/2cκw.

If m ≡ 1 (mod 4), then

sk,k−2 = 23k−3

[
e

(
−1

4

)
ρaρbρc + e

(
−3 · 1

4

)
ρ̄aρ̄bρ̄c

]
= 23k−3 · 1 · [−iρaρbρc + iρ̄aρ̄bρ̄c]

= 23k−3(−1)bm/2cλw.

If m ≡ 2 (mod 4), then

sk,k−2 = 23k−3

[
e

(
−2

4

)
ρaρbρc + e

(
−3 · 2

4

)
ρ̄aρ̄bρ̄c

]
= 23k−3 [−ρaρbρc − ρ̄aρ̄bρ̄c] = 23k−3 · (−1) · κw
= 23k−3(−1)bm/2cκw.
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If m ≡ 3 (mod 4), then

sk,k−2 = 23k−3

[
e

(
−3

4

)
ρaρbρc + e

(
−3 · 3

4

)
ρ̄aρ̄bρ̄c

]
= 23k−3 · 1 · [iρaρbρc − iρ̄aρ̄bρ̄c] = 23k−3 · (−1) · λw
= 23k−3(−1)bm/2cλw.

Therefore,

sk,k−2 =

{
23k−3(−1)bm/2cκw, if m ≡ 0 (mod 2).

23k−3(−1)bm/2cλw, otherwise.
(3.39)

When k = 2, using (3.37) and (3.39) to substitute into (3.36), we see that

r22,Q(m) = 24 +
1

4

1∑
τ=0

s2,τ = 24 +
1

4
(s2,0 + 0)

=

{
24 + 1

4
23·2−3(−1)bm/2cκw, if m ≡ 0 (mod 2),

24 + 1
4
23·2−3(−1)bm/2cλw, otherwise,

=

{
24 + 2(−1)bm/2cκw, if m ≡ 0 (mod 2),

24 + 2(−1)bm/2cλw, otherwise.

When k − τ = 3 (i.e., τ = k − 3), the equation (3.38) becomes

sk,τ = 23(2k−3)/2

(
23

abc

) 23−2−1∑
t2=0

e

(
−4mt2

23

)[
e

(
−m
23

)(
23

1 + 4t2

)
ρaρbρc

+ e

(
−3m

23

)(
23

3 + 4t2

)
ρ̄aρ̄bρ̄c

]
= 23(2k−3)/2

(
23

abc

) 1∑
t2=0

e

(
mt2

2

)[
e

(
−m

8

)(
23

1 + 4t2

)
ρaρbρc

+ e

(
−3m

8

)(
23

3 + 4t2

)
ρ̄aρ̄bρ̄c

]
.

By the multiplicative property of the Jacobi symbol,(
23

abc

)
=

(
2

abc

)3

=

(
2

abc

)2(
2

abc

)
=

(
2

abc

)
,(

23

1 + 4t2

)
=

(
2

1 + 4t2

)3

=

(
2

1 + 4t2

)2(
2

1 + 4t2

)
=

(
2

1 + 4t2

)
, and(

23

3 + 4t2

)
=

(
2

3 + 4t2

)3

=

(
2

3 + 4t2

)2(
2

3 + 4t2

)
=

(
2

3 + 4t2

)
,
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so

sk,k−3 = 23(2k−3)/2

(
2

abc

) 1∑
t2=0

e

(
mt2

2

)[
e

(
−m

8

)(
2

1 + 4t2

)
ρaρbρc

+ e

(
−3m

8

)(
2

3 + 4t2

)
ρ̄aρ̄bρ̄c

]
= 23(2k−3)/2

(
2

abc

)(
e

(
m · 0

2

)[
e

(
−m

8

)(
2

1 + 4 · 0

)
ρaρbρc

+ e

(
−3m

8

)(
2

3 + 4 · 0

)
ρ̄aρ̄bρ̄c

]
+ e

(
m · 1

2

)[
e

(
−m

8

)(
2

1 + 4 · 1

)
ρaρbρc + e

(
−3m

8

)(
2

3 + 4 · 1

)
ρ̄aρ̄bρ̄c

])
= 23(2k−3)/2

(
2

abc

)(
e

(
−m

8

)
· 1 · ρaρbρc + e

(
−3m

8

)
· (−1) · ρ̄aρ̄bρ̄c

+ e

(
3m

8

)
· (−1) · ρaρbρc + e

(m
8

)
· 1 · ρ̄aρ̄bρ̄c

)
= 23(2k−3)/2

(
2

abc

)(
e

(
−m

8

)
ρaρbρc − e

(
−3m

8

)
ρ̄aρ̄bρ̄c

− e

(
3m

8

)
ρaρbρc + e

(m
8

)
ρ̄aρ̄bρ̄c

)
.

If m ≡ 1 (mod 8), then

sk,k−3 = 23(2k−3)/2

(
2

abc

)(
e

(
−1

8

)
ρaρbρc − e

(
−3 · 1

8

)
ρ̄aρ̄bρ̄c

− e

(
3 · 1

8

)
ρaρbρc + e

(
1

8

)
ρ̄aρ̄bρ̄c

)
= 23(2k−3)/2

(
2

abc

)(
2e

(
−1

8

)
ρaρbρc − 2e

(
−3 · 1

8

)
ρ̄aρ̄bρ̄c

)
= 2(6k−9)/2

(
2

abc

)(
21/2(1− i)ρaρbρc − 21/2(−1− i)ρ̄aρ̄bρ̄c

)
= 23k−4

(
2

abc

)
((1− i)ρaρbρc − (−1− i)ρ̄aρ̄bρ̄c) = 23k−4

(
2

abc

)
(κw + λw) .

Sincem ≡ 1 (mod 8), by Theorem 5.9 in LeVeque’s Fundamentals of Number Theory [LeV96,
p. 110], (

2

abcm

)
=

(
2

abc

)
and

(
−1

m

)
= 1,

so

sk,k−3 = 23k−4

(
2

abcm

)(
κw + λw

(
−1

m

))
if m ≡ 1 (mod 8).
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If m ≡ 3 (mod 8), then

sk,k−3 = 23(2k−3)/2

(
2

abc

)(
e

(
−3

8

)
ρaρbρc − e

(
−3 · 3

8

)
ρ̄aρ̄bρ̄c

− e

(
3 · 3

8

)
ρaρbρc + e

(
3

8

)
ρ̄aρ̄bρ̄c

)
= 23(2k−3)/2

(
2

abc

)(
2e

(
−3

8

)
ρaρbρc − 2e

(
−3 · 3

8

)
ρ̄aρ̄bρ̄c

)
= 2(6k−9)/2

(
2

abc

)(
21/2(−1− i)ρaρbρc − 21/2(1− i)ρ̄aρ̄bρ̄c

)
= 23k−4

(
2

abc

)
((−1− i)ρaρbρc − (1− i)ρ̄aρ̄bρ̄c) = 23k−4

(
2

abc

)
(−κw + λw) .

Sincem ≡ 3 (mod 8), by Theorem 5.9 in LeVeque’s Fundamentals of Number Theory [LeV96,
p. 110], (

2

abcm

)
= −

(
2

abc

)
and

(
−1

m

)
= −1,

so

sk,k−3 = 23k−4

(
2

abcm

)(
κw + λw

(
−1

m

))
if m ≡ 3 (mod 8).

If m ≡ 5 (mod 8), then

sk,k−3 = 23(2k−3)/2

(
2

abc

)(
e

(
−5

8

)
ρaρbρc − e

(
−3 · 5

8

)
ρ̄aρ̄bρ̄c

− e

(
3 · 5

8

)
ρaρbρc + e

(
5

8

)
ρ̄aρ̄bρ̄c

)
= 23(2k−3)/2

(
2

abc

)(
2e

(
−5

8

)
ρaρbρc − 2e

(
−3 · 5

8

)
ρ̄aρ̄bρ̄c

)
= 2(6k−9)/2

(
2

abc

)(
21/2(−1 + i)ρaρbρc − 21/2(1 + i)ρ̄aρ̄bρ̄c

)
= 23k−4

(
2

abc

)
((−1 + i)ρaρbρc − (1 + i)ρ̄aρ̄bρ̄c) = 23k−4

(
2

abc

)
(−κw − λw) .

Sincem ≡ 5 (mod 8), by Theorem 5.9 in LeVeque’s Fundamentals of Number Theory [LeV96,
p. 110], (

2

abcm

)
= −

(
2

abc

)
and

(
−1

m

)
= 1,

so

sk,k−3 = 23k−4

(
2

abcm

)(
κw + λw

(
−1

m

))
if m ≡ 5 (mod 8).
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If m ≡ 7 (mod 8), then

sk,k−3 = 23(2k−3)/2

(
2

abc

)(
e

(
−7

8

)
ρaρbρc − e

(
−3 · 7

8

)
ρ̄aρ̄bρ̄c

− e

(
3 · 7

8

)
ρaρbρc + e

(
7

8

)
ρ̄aρ̄bρ̄c

)
= 23(2k−3)/2

(
2

abc

)(
2e

(
−7

8

)
ρaρbρc − 2e

(
−3 · 7

8

)
ρ̄aρ̄bρ̄c

)
= 2(6k−9)/2

(
2

abc

)(
21/2(1 + i)ρaρbρc − 21/2(−1 + i)ρ̄aρ̄bρ̄c

)
= 23k−4

(
2

abc

)
((1 + i)ρaρbρc − (−1 + i)ρ̄aρ̄bρ̄c) = 23k−4

(
2

abc

)
(κw − λw) .

Sincem ≡ 7 (mod 8), by Theorem 5.9 in LeVeque’s Fundamentals of Number Theory [LeV96,
p. 110], (

2

abcm

)
=

(
2

abc

)
and

(
−1

m

)
= −1,

so

sk,k−3 = 23k−4

(
2

abcm

)(
κw + λw

(
−1

m

))
if m ≡ 7 (mod 8).

Therefore, for any odd integer m,

sk,k−3 = 23k−4

(
2

abcm

)(
κw + λw

(
−1

m

))
.(3.40)

If m ≡ 2 (mod 8), then

sk,k−3 = 23(2k−3)/2

(
2

abc

)(
e

(
−2

8

)
ρaρbρc − e

(
−3 · 2

8

)
ρ̄aρ̄bρ̄c

− e

(
3 · 2

8

)
ρaρbρc + e

(
2

8

)
ρ̄aρ̄bρ̄c

)
= 23(2k−3)/2

(
2

abc

)
(−iρaρbρc − iρ̄aρ̄bρ̄c + iρaρbρc + iρ̄aρ̄bρ̄c) = 0.

If m ≡ 6 (mod 8), then

sk,k−3 = 23(2k−3)/2

(
2

abc

)(
e

(
−6

8

)
ρaρbρc − e

(
−3 · 6

8

)
ρ̄aρ̄bρ̄c

− e

(
3 · 6

8

)
ρaρbρc + e

(
6

8

)
ρ̄aρ̄bρ̄c

)
= 23(2k−3)/2

(
2

abc

)
(iρaρbρc + iρ̄aρ̄bρ̄c − iρaρbρc − iρ̄aρ̄bρ̄c) = 0.

Thus, if 2 ‖ m,

sk,k−3 = 0.(3.41)
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When k = 3, using (3.37), (3.39), (3.40), and (3.41) to substitute into (3.36), we see that

r23,Q(m) = 22·3 +
1

23

3−1∑
τ=0

sk,τ

= 26 +
1

8
(s3,0 + s3,1 + s3,2)

= 26 +
1

8
(s3,0 + s3,1 + 0) = 26 +

1

8
(s3,0 + s3,1)

=


26 +

1

8

(
23·3−4

(
2

abcm

)(
κw + λw

(
−1

m

))
+ 23·3−3(−1)bm/2cλw

)
, if 2 - m,

26 +
1

8

(
0 + 23·3−3(−1)bm/2cκw

)
, if 2 ‖ m,

=


26 +

1

8

(
25

(
2

abcm

)(
κw + λw

(
−1

m

))
+ 26λw(−1)bm/2c

)
, if 2 - m,

26 +
1

8

(
26(−1)bm/2cκw

)
, if 2 ‖ m,

=


26

(
1 +

1

16

(
2

abcm

)(
κw + λw

(
−1

m

))
+

1

8
λw(−1)bm/2c

)
, if 2 - m,

26

(
1− 1

8
κw

)
, if 2 ‖ m.

If m is odd (i.e., 2 - m), then, by Theorem 5.9 in LeVeque’s Fundamentals of Number
Theory [LeV96, p. 110], (

−1

m

)
= (−1)(m−1)/2 = (−1)bm/2c,

so

r23,Q(m) =


26

(
1 +

1

16

(
2

abcm

)(
κw + λw

(
−1

m

))
+

1

8
λw

(
−1

m

))
, if 2 - m,

26

(
1− 1

8
κw

)
, if 2 ‖ m.

Let ~v0 = (x0, y0, z0)T be a solution to Q(~v) ≡ m (mod 23). Toward contradiction, assume
that 2 | ax0, 2 | by0, and 2 | cz0. Since 2 - abc, x0 = 2x1, y0 = 2y1, and z0 = 2z1 for some
x1, y1, z1 ∈ Z. Thus,

Q(~v0) = ax2
0 + by2

0 + cz2
0 = a(2x1)2 + b(2y1)2 + c(2z1)2

= 4ax2
1 + 4by2

1 + 4cz2
1

≡ 0 (mod 4).

However, we assumed that 22 - m, so m 6≡ 0 ≡ Q(~v0) (mod 4). Because Q(~v0) 6≡ m
(mod 22), it is impossible for Q(~v0) ≡ m (mod 23), producing a contradiction. Thus, 2 -
ax0, 2 - by0, or 2 - cz0 for any solution ~v0 = (x0, y0, z0)T to Q(~v) ≡ m (mod 23). By
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Corollary 3.14, for k ≥ 3,

r2k,Q(m) =


22k

(
1 +

1

16

(
2

abcm

)(
κw + λw

(
−1

m

))
+

1

8
λw

(
−1

m

))
, if 2 - m,

22k

(
1− 1

8
κw

)
, if 2 ‖ m.

�

With Theorems 3.6, 3.10, 3.11, and 3.16, we can determine if a square-free integer m is
locally represented everywhere by Q given that a, b, and c are odd and pairwise coprime.
The formulas found in this section can be used to write a program to find S(Q, n) for some
integer n. In the next section, we discuss some results of some numerical computations made
by a program using the formulas for rpk,Q(m) found in this section.

4. Observations about Data

We analyzed S(Q, 2000000) for Q such that a, b, c < 30 are odd and pairwise coprime. Out
of the 322 quadratic forms examined, only 46 had max(S(Q, 2000000)) < 500000, 54 had
max(S(Q, 2000000)) < 1000000, and 65 had max(S(Q, 2000000)) < 1500000. Therefore, it
is unreasonable to say that S(Q, 2000000) = S(Q) for many of quadratic forms examined.
The data collected suggests that max(S(Q)) grows rapidly compared to any of the measures
used for Q. These measures include the determinant of Q (denoted det(Q)), the level of Q
(denoted level(Q)), the maximum of a, b, and c (denoted max(a, b, c)), and

√
a2 + b2 + c2.

Furthermore, it appears that the upper bound on the size of S(Q) grows as the measure of Q
grows. Appendix D lists S(Q, 2000000) if S(Q, 2000000) is empty or max(S(Q, 2000000)) <
15000. Appendix E contains plots concerning max(S(Q, 2000000)) and |S(Q, 2000000)|.

It appears that the lower bound on the maximum of S(Q) increases as the size of S(Q)
increases. This is expected since the size of S(Q) automatically creates a lower bound of
|S(Q)| for the maximum of S(Q). From the data collected, it seems that max(S(Q)) ≥
55|S(Q)|. This estimate was found by dividing max(S(Q, 2000000)) by |S(Q, 2000000)| if
0 < |S(Q, 2000000)| < 1800000. Let sl(Q, n) = max(S(Q, n))/|S(Q, n)| for Q such that
|S(Q, n)| < 9

10
n. The minimum value of sl(Q, 2000000) for the considered quadratic forms

is 721/13 ≈ 55.46. This value is achieved by the quadratic form Q(~v) = x2 + 9y2 + 13z2.
Appendix F lists the 25 smallest values of sl(Q, 2000000) found and their corresponding
quadratic forms.

5. Future Directions

Section 3 lists formulas for rpk,Q(m) under particular divisibility conditions on the coef-
ficients of a positive definite diagonal integer-matrix ternary quadratic form. The formulas
for rpk,Q(m) can be used to determine if a square-free integer m is locally represented every-
where by Q given that a, b, and c are odd and pairwise coprime. The author of this paper
has written a program in Sage to compute which square-free integers are locally represented
everywhere but are not globally represented by such quadratic forms. Some observations
about the data generated by this program are found in Section 4.

More formulas for rpk,Q(m) can be developed. For example, what is rpk,Q(m) when p is an
odd prime, m is square-free, p - a, p ‖ b, and p | c? What is r2k,Q(m) if m is square-free and
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at least one of a, b, c is even? By answering these questions, we could write programs that
could compute S(Q, n) for any quadratic form.

Out of the 322 quadratic forms examined, only 46 had max(S(Q, 2000000)) < 500000, 54
had max(S(Q, 2000000)) < 1000000, and 65 had max(S(Q, 2000000)) < 1500000. Therefore,
it is unreasonable to say that S(Q, 2000000) = S(Q) for many of quadratic forms examined.
Thus, it would be nice to compute S(Q, n) for n > 2000000 and collect more computational
data about these quadratic forms.

From the data collected, it seems that max(S(Q)) ≥ 55|S(Q)|. However, this bound was
found computationally, so it would be nice to determine a lower bound for max(S(Q)) in
terms of |S(Q)| theoretically.

Only 5 of the 322 quadratic forms examined are regular quadratic forms. They are x2 +
y2 + z2, x2 + y2 + 3z2, x2 + y2 + 5z2, x2 + y2 + 9z2, and x2 + y2 + 21z2. These were the only
quadratic forms examined in which S(Q, 2000000) was computed to be the empty set. This
raises the question: If S(Q) is nonempty, how large can the minimum element of S(Q) be?
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Appendix A. Sage Code for Quadratic Gauss Sums

The following function written for Sage returns the quadratic Gauss sum G

(
(num)

pk

)
.

def quadratic_Gauss_sum(num, p, k):

"""

Returns the quadratic Gauss sum $G \left( \frac{(num)}{p^k} \right)$.

INPUT:

‘num‘ -- an integer

‘p‘ -- a positive prime integer

‘k‘ -- a non-negative integer

OUTPUT:

Integer

"""

if num not in ZZ:

raise TypeError("num = " + str(num) + " is not an integer!")

if p not in ZZ:

raise TypeError("p = " + str(p) + " is not an integer!")

if p <= 0:

raise TypeError("p = " + str(p) + " is not positive!")

if not is_prime(p):

raise TypeError("p = " + str(p) + " is not prime!")

if k not in ZZ:

raise TypeError("k = " + str(k) + " is not an integer!")

if k < 0:

raise TypeError("k = " + str(k) + " is not non-negative!")

if num == 0:

return p**k

if k == 0:

# k == 0, so p**k == 1

return 1

elif p == 2:

# p == 2

val = valuation(num, p)

if k == 1:

# p**k == 2

if val > 0:

return 2

else:

return 0

else:

# p**k == 2**k, k >= 2

if k == val + 1:
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# k == val + 1

return 0

elif k <= val:

# k < val + 1

return p**k

else:

# k > val + 1

num2 = num / (p**val)

# Calculates enum2

if num2 % 4 == 1:

enum2 = 1 + i

elif num2 % 4 == 3:

enum2 = 1 - i

else:

raise ArithmeticError(’This shouldn\’t happen’)

# Calculates the Gauss sum

return (p**((k+val)/2) * kronecker_symbol(p**(k-val), num2) *

enum2)

else:

# p >= 3, a.k.a. p is a prime odd

val = valuation(num, p)

if k <= val:

# k <= val, the Gauss sum equals p**k

return p**k

else:

# k > val

diff = k - val

# Calculates eppow

ppow = p**diff

if ppow % 4 == 1:

eppow = 1

elif ppow % 4 == 3:

eppow = i

else:

raise ArithmeticError(’This shouldn\’t happen’)

# Calculates the Gauss sum

num2 = num / (p**val)

return kronecker_symbol(num2, ppow) * eppow * p**((k+val)/2)
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Appendix B. Sage Code for Computing rpk,Q(m) Using the Fast Fourier
Transform

The following function written for Sage returns a list of length pk whose mth entry is
rpk,Q(m). The representation_list_mod_p_to_k_fft() function uses the quadratic_Gauss_sum()
function mentioned in Appendix A.

def representation_list_mod_p_to_k_fft(a, b, c, p, k):

"""

Returns a list of length $p^k$ whose $m$th entry is $r_{p^k , Q}(m)$.

This method uses the fast Fourier transform.

INPUT:

‘a‘ -- a positive integer

‘b‘ -- a positive integer

‘c‘ -- a positive integer

‘p‘ -- a positive prime integer

‘k‘ -- a non-negative integer

OUTPUT:

list

"""

tol = 10**(-6)

pk = p**k

rpkQmsFFT = FastFourierTransform(pk)

for m in IntegerRange(pk):

fpkm = (quadratic_Gauss_sum(a*m, p, k) *

quadratic_Gauss_sum(b*m, p, k) *

quadratic_Gauss_sum(c*m, p, k) / pk)

rpkQmsFFT[m] = (fpkm.real(), fpkm.imag())

rpkQmsFFT.forward_transform()

# rpkQms is the list that will only contain the real part

# of the entries in rpkQmsFFT (once the real part has been

# rounded to the appropriate integer)

rpkQms = [0]*pk

for m in IntegerRange(pk):

if abs(rpkQmsFFT[m][1]) > tol:

raise ArithmeticError(’This shouldn\’t happen’)

rpkQms[m] = round(rpkQmsFFT[m][0])

return rpkQms
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Appendix C. Sage Code for Computing a List of Square-Free Non-Negative
Integers That Are Represented Locally But Not Represented

Globally by a Quadratic Form

The following function written for Sage returns a list of square-free non-negative integers
less than n that are represented locally but not represented globally by a given quadratic
form Q. The function get_locally_not_globally_represented_list_odd(Q,n) uses the
representation_list_mod_p_to_k_fft() function mentioned in Appendix B.

def get_locally_not_globally_represented_list_odd(Q,n):

"""

Returns $S(Q)$, a list of non-negative square-free integers less

than n that are represented locally but not represented globally

by the quadratic form Q.

INPUT:

‘Q‘ -- a diagonal ternary quadratic form with the diagonal

elements being pairwise coprime positive odd integers

‘n‘ -- an integer

OUTPUT:

list

"""

if not n in ZZ:

raise TypeError, "n = " + str(n) + " is not an integer!"

tol = 10**(-6)

# thetaCoeffs stores the first n coefficients of the theta series

# associated with Q

thetaCoeffs = Q.theta_series(n).polynomial().list()

thetaCoeffsLen = len(thetaCoeffs)

if thetaCoeffsLen < n:

numOfAddedZeros = n - thetaCoeffsLen

thetaCoeffs.extend([0]*numOfAddedZeros)

# Gets the prime divisors of the discriminant of Q

primes = prime_divisors(Q[0,0]*Q[1,1]*Q[2,2])

repListsModPrimesDict = {2 : representation_list_mod_p_to_k_fft(Q[0,0], \

Q[1,1], Q[2,2], 2, 3)}

for p in primes:

repListsModPrimesDict[p] = representation_list_mod_p_to_k_fft(Q[0,0], \

Q[1,1], Q[2,2], p, 2)

primes.append(2)

# Creates the desired list of numbers

repList = []

for j in IntegerRange(n):
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if thetaCoeffs[j] < 1:

if j.is_squarefree():

isLocallyRep = True

for p in primes:

pRepList = repListsModPrimesDict[p]

if pRepList[j%len(pRepList)] < tol:

isLocallyRep = False

if isLocallyRep:

repList.append(j)

return repList
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Appendix D. S(Q, 2000000) for Some Quadratic Forms

The following table lists S(Q, 2000000) for the quadratic formQ(~v) = ax2+by2+cz2 (where
a, b, c < 30 are odd and pairwise coprime) if S(Q, 2000000) is empty or max(S(Q, 2000000)) <
15000. The first column of the table contains the coefficients of a quadratic form Q in the
form (a, b, c). The second column states S(Q, 2000000).

(a, b, c) S(Q, 2000000)

(1, 1, 1) {}
(1, 1, 3) {}
(1, 1, 5) {}
(1, 1, 9) {}
(1, 1, 21) {}
(1, 1, 13) {6, 7, 46, 55, 79, 271, 439, 721}
(1, 9, 13) {2, 5, 7, 41, 46, 55, 79, 146, 167, 185, 271, 439, 721}
(1, 3, 7) {2, 5, 17, 22, 30, 58, 62, 122, 165, 318, 498, 822, 957, 1193}
(1, 1, 17) {3, 6, 11, 14, 38, 59, 83, 110, 131, 201, 209, 339, 419, 581, 1046, 1259, 2315, 2726,

2819}
(1, 3, 13) {2, 5, 10, 11, 23, 30, 35, 46, 47, 58, 66, 82, 85, 102, 107, 158, 167, 187, 197, 218,

255, 262, 266, 278, 282, 370, 435, 443, 462, 503, 530, 583, 622, 678, 802, 822,

898, 1002, 1030, 1173, 1187, 1415, 2118, 2543, 2802, 3882}
(1, 5, 9) {2, 7, 17, 22, 26, 31, 47, 53, 62, 71, 74, 113, 119, 133, 146, 191, 194, 199, 209, 218,

221, 257, 302, 367, 377, 383, 422, 434, 503, 599, 638, 698, 719, 727, 1013, 1031,

1247, 1391, 1631, 1673, 1973, 2006, 2519, 3722, 3953, 4031, 4697}
(1, 1, 15) {6, 7, 11, 14, 22, 38, 42, 43, 46, 59, 71, 91, 103, 107, 114, 123, 127, 154, 186, 191, 214,

231, 267, 319, 323, 326, 359, 382, 438, 478, 487, 494, 506, 547, 618, 654, 658, 659,

834, 1079, 1086, 1131, 1222, 1302, 1446, 1486, 1563, 1743, 2123, 2326, 2634, 2787,

4047, 6378, 8394}
(1, 3, 25) {2, 11, 14, 17, 22, 23, 47, 58, 59, 66, 71, 83, 94, 102, 138, 166, 174, 178, 187, 202, 278,

287, 353, 518, 542, 759, 786, 922, 1182, 1343, 1398, 1511, 1578, 1582, 1974, 3243,

3503, 3562, 5358, 12423, 13422}
(1, 1, 27) {7, 11, 14, 19, 22, 23, 38, 46, 55, 62, 70, 71, 83, 86, 94, 103, 115, 119, 139, 151, 154,

167, 179, 199, 203, 211, 215, 262, 266, 322, 331, 335, 374, 395, 418, 430, 467, 523,

526, 542, 551, 559, 587, 595, 614, 671, 710, 766, 790, 851, 863, 878, 895, 934, 938,

979, 1034, 1039, 1231, 1235, 1291, 1406, 1426, 1610, 1742, 1846, 1991, 2270, 2446,

2567, 2659, 2674, 3083, 3107, 3514, 3799, 4262, 4486, 5855, 6719, 8627, 8858,

13711, 14986}
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Appendix E. Plots About S(Q, 2000000)

The following plots were made using the get_locally_not_globally_represented_list_odd()
function to find all the elements of S(Q, 2000000) for Q such that a, b, c < 30 are odd and
pairwise coprime.
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Appendix F. Smallest Values of max(S(Q, 2000000))/|S(Q, 2000000)|

Let sl(Q, n) = max(S(Q, n))/|S(Q, n)| for Q such that |S(Q, n)| < 9
10
n. The following

table lists the 25 smallest values of sl(Q, 2000000) found and their corresponding quadratic
forms. The first column of the table contains sl(Q, 2000000). The second column contains
the coefficients of the corresponding quadratic form Q in the form (a, b, c), where Q(~v) =
ax2 + by2 + cz2. The last column contains a decimal approximation of sl(Q, 2000000). Note
that a, b, c < 30 are odd and pairwise coprime.

sl(Q, 2000000) (a, b, c) Approximation of sl(Q, 2000000)

721/13 (1, 9, 13) 55.4615384615385

1941/23 (1, 3, 13) 84.3913043478261

1193/14 (1, 3, 7) 85.2142857142857

721/8 (1, 1, 13) 90.1250000000000

4697/47 (1, 5, 9) 99.9361702127660

2819/19 (1, 1, 17) 148.368421052632

17818/119 (1, 13, 25) 149.731092436975

8394/55 (1, 1, 15) 152.618181818182

42037/275 (3, 7, 11) 152.861818181818

35831/219 (9, 13, 25) 163.611872146119

7493/42 (1, 1, 27) 178.404761904762

19651/96 (1, 5, 21) 204.697916666667

26547/124 (1, 5, 29) 214.088709677419

92842/433 (5, 9, 29) 214.415704387991

19999/82 (1, 17, 25) 243.890243902439

604013/2138 (3, 19, 23) 282.513096351731

81797/284 (1, 7, 27) 288.017605633803

58647/181 (1, 13, 17) 324.016574585635

13422/41 (1, 3, 25) 327.365853658537

311969/948 (3, 11, 19) 329.081223628692

7719/23 (1, 5, 7) 335.608695652174

105041/300 (1, 25, 27) 350.136666666667

31305/89 (1, 3, 19) 351.741573033708

256057/727 (3, 7, 23) 352.210453920220

468901/1281 (3, 13, 25) 366.042935206870



GAUSS SUMS & REPRESENTATION BY TERNARY QUADRATIC FORMS 59

References

[Apo76] Tom M. Apostol, Introduction to analytic number theory, Springer-Verlag, 1976.
[BEW98] Bruce C. Berndt, Ronald J. Evans, and Kenneth S. Williams, Gauss and Jacobi sums, John Wiley

& Sons, 1998.
[Coh93] Henri Cohen, A course in computational algebraic number theory, Graduate Texts in Mathematics,

vol. 138, pp. 27 – 28, Springer-Verlag, 1993.
[Duk88] W. Duke, Lattice points on ellipsoids, Séminaire de Théorie des Nombres 16 (1987-1988).
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