
ZEROS OF MAASS FORMS
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Abstract. We study the location of the zeros of the Maass form obtained by

applying the Maass level raising operator Rk = i

(
∂

∂x
−

∂

∂y

)
+

k

y
to Ek. We

find that this Maass form has the same number of zeros on the bottom arc

of F as Ek+2, and conjecture that all of its zeros in F lie on this arc. We
note that this seems to hold for the Maass form obtained by applying the level

raising operator multiple times to the Eisenstein series.

1. Introduction and Statement of Results

The zeros of modular forms have been well studied over the years. For example,
in a very influential paper [5], Rankin and Swinnerton-Dyer showed that all of the
zeros of the weight k Eisenstein series, Ek, in the standard fundamental domain

F lie on the bottom arc B =
{
eiθ :

π

2
≤ θ ≤ 2π

3

}
of F . In stark contrast, it

was shown by the work of Rudnick [6] and Holowinsky-Soundararajan [2] that the
zeros of Hecke eigenforms become equidistributed with respect to the hyperbolic
measure on the fundamental domain as the weight grows. In this paper we study
the location of the zeros of the Maass form obtained by applying the Maass raising
operator Rk to Ek. The result is no longer a modular form, but instead a weight
k + 2 Maass form.

We find that this Maass form has the same number of zeros on A as Ek+2. Define
m(k) by

(1) m(k) =

{
bk/12c, if k 6≡ 2 mod (12),

bk/12c − 1, if k ≡ 2 mod (12).

Theorem 1.1. The Maass form RkEk has m(k + 2) zeros along the arc A.

Since RkEk is no longer holomorphic, we do not have a valence formula for it.
Hence, this theorem does not exclude the possibility of there being other zeros
inside the fundamental domain. However, as can be seen in Figure [?], numerical
experiments with Mathematica suggest that all the zeros are on A.

Conjecture 1.2. All of the zeros of RkEk on F lie on the bottom arc A.

2. Preliminaries

A modular form of weight k is a complex-valued function f on the upper half-
plane H = {z ∈ C, Im(z) > 0}, satisfying the following three conditions:
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Figure 1. Re(R36E36(z)) = 0 and Im(R36E36(z)) = 0 in solid
and dotted lines, respectively.

(a) For any z in H and any matrix γ =

(
a b
c d

)
∈ SL2(Z), f satisfies

(2) f(γz) = f

(
az + b

cz + d

)
= (cz + d)kf(z).

(b) f is a complex analytic function on H.
(c) f is required to be holomorphic as z →∞.

A Maass form is a generalisation of modular forms in which the last two conditions
of modular forms are replaced by the following:

(b)′ f is an eigenvector of the Laplacian operator

∆k = −y2
( ∂2

∂x2
+

∂2

∂y2

)
+ iky

( ∂
∂x

+ i
∂

∂y

)
.

(c)′ f is of at most polynomial growth as z →∞.

Throughout this paper we will use the following standard notation Γ = SL2(Z),

S =

(
0 −1
1 0

)
, T =

(
1 1
0 1

)
, ρ = e

2πi
3 .

Let Ek(z) be the Eisenstein series of weight k, k even, defined by

(3) Ek(z) =
1

2

∑∑
gcd(c,d)=1
c,d∈Z

(cz + d)−k.

Its Fourier expansion is given by

Ek(z) = 1 +
2

ζ(1− k)

∞∑
n=1

σk−1(n)e2πinz,
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where σk−1(n) is the divisor function.
Let Mk denote the complex vector space of modular forms of weight k for Γ. If

f ∈Mk, the valence formula is given by

(4)
k

12
=

1

2
ordi(f) +

1

3
ordρ(f) + ord∞(f) +

∑
τ∈Γ\H−{i,ρ}

ordτ (f).

For details and a proof of this formula see §III.2 of [3].
Define m(k) by

(5) m(k) =

{
bk/12c, if k 6≡ 2 mod (12),

bk/12c − 1, if k ≡ 2 mod (12),

and write k = 12m(k) + s. Note that s determines the residue class of k modulo
12. Using this and the valence formula, we obtain

(6) ordi(f) ≥

{
1, if k ≡ 2 mod (4),

0, if k ≡ 0 mod (4),

and

(7) ordρ(f) ≥


2, if k ≡ 2 mod (6),

1, if k ≡ 4 mod (6),

0, if k ≡ 0 mod (6).

Define the derivative of a modular form f to be

Df =
1

2πi

df

dz
.

Recall the Maass raising and lowering operators Rk and Lk on functions f : H→ C
which are defined by

Rk = 2i
∂

∂z
+
k

y
= i

(
∂

∂x
− ∂

∂y

)
+
k

y
,

Lk = −2iy2 ∂

∂z̄
+
k

y
= −iy2

(
∂

∂x
+

∂

∂y

)
.

With respect to the Petersson slash operator, these satisfy the propertiesRk(f |kγ) =
(Rkf)|k+2γ and Lk(f |kγ) = (Lkf)|k−2γ, for any γ ∈ SL2(R). This is, if f trans-
forms by (2), then Rkf and Lkf transform like modular forms of weight k+ 2 and

weight k − 2, respectively. Here Rk satisfies the relation Rk = −4πD +
k

y
. If we

apply Rk to the weight k Eisenstein series, we obtain

Rk (Ek(z)) = −4πDEk(z) +
k

y
Ek(z)

= −ki
∑∑

gcd(c,d)=1
c,d∈Z

c(cz + d)−k−1 +
k

y

1

2

∑∑
gcd(c,d)=1
c,d∈Z

(cz + d)−k.

We are interested in the properties of this form. In particular, we study the
number and the location of its zeros inside the fundamental domain F = {z ∈ H :
−1/2 ≤ Re(z) ≤ 1/2, |z| ≥ 1}.
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3. Basic properties of zeros of Rk(f).

Definition 3.1. Rjk = Rk+2j−2 ◦ · · · ◦Rk+2 ◦Rk.

Lemma 3.1. Suppose f satisfies (2) and k ≡ 2(mod4). Then f(i) = 0.

Proof. Note that (S)i = i. Since f transforms like a weight k modular form, we
have that

(8) f((S)i) = (i)kf(i).

Since i is a fourth root of unity, we have that f(i) = 0 whenever k ≡ 2 mod (4). �

Corollary 3.2. Suppose f satisfies (2) and k ≡ 2 − 2j(mod4). Then Rjkf has a
zero at i.

Lemma 3.3. Suppose f satisfies (2) and k ≡ 2, 4(mod6). Then f(ρ) = 0.

Proof. Note that (ST )ρ = ρ. Since f transforms like a weight k modular form, we
have that

(9) f((ST )ρ) = (ρ+ 1)kf(ρ).

Since ρ + 1 is a sixth root of unity, we have that f(ρ) = 0 whenever k + 2j ≡
2, 4 mod (6). �

Corollary 3.4. Suppose f satisfies (2) and k ≡ 2− 2j(mod6) or k ≡ 4− 2j(mod

6) Then Rjkf has a zero at ρ.

Lemma 3.5. Suppose f is a modular form of weight k with real Fourier coefficients.

Then z
k+2
2 Rkf is real valued on A.

Proof. It is known that if the coefficients an(y) of the Fourier expansion of g(z) =
∞∑
n=0

an(y)e2πinx are real and g satisfies (2), then z
k
2 g(z) is real valued for |z| = 1.

See, for example, Proposition 2.1 of [1].
Since f has real Fourier coefficients, then Rk(f) also has real Fourier coefficients.

Hence, since Rk(f) transforms like a k + 2 modular forms, we have that z
k+2
2 Rkf

is real valued on A. �

4. Proof of theorem 1.1

We will prove this theorem by showing thatRk
(
Ek(eiθ)

)
eiθ

k+2
2 hasm(k+2) zeros

in A. Some of the calculations in this section were performed using Mathematica
10.

If we restrict Rk(Ek(z))z
k+2
2 to F and |z| = 1, then we have Rk (Ek(z)) z

k+2
2 =

−kieiθ/2
∑∑

gcd(c,d)=1
c,d∈Z

c(ceiθ/2 + de−iθ/2)−k−1 +
keiθ

sin(θ)

1

2

∑∑
gcd(c,d)=1
c,d∈Z

(ceiθ/2 + de−iθ/2)−k,

where
π

2
≤ θ ≤ 2π

3
. Taking the terms with c2 + d2 = 1, we obtain

2k csc(θ) cos

(
kθ

2
+ θ

)
.
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Taking the real part of the terms with c2 + d2 = 2, we get (using Mathematica)

(10)
1

2
k csc(θ)

(
21−k(−1)−

k
2 sin

(θ
2

)−k
−
(

2 csc
(θ

2

))−k
−
(

2 csc
(θ

2

))−k)
.

Adding these two and simplifying, we obtain

(11) k csc(θ)
(

2 cos
(kθ

2
+ θ
)

+ (−1)
k
2 2−k sin

(θ
2

)−k
−
(

2 csc
(θ

2

))−k)
.

Lemma 4.1. RkEk(eiθ)eiθ
k+2
2 = k

(
csc(θ)

(
M1(θ) +M2(θ)

)
+ E1(θ) + E2(θ)

)
,

where

M1(θ) = 2 cos
(kθ

2
+ θ
)
,

M2(θ) = (−1)
k
2 2−k sin

(θ
2

)−k
−
(

2 csc
(θ

2

))−k
,

E1(θ) = −ieiθ/2
∑∑

gcd(c,d)=1

c2+d2≥5

c(ceiθ/2 + de−iθ/2)−k−1

E2(θ) =
eiθ

sin(θ)

1

2

∑∑
gcd(c,d)=1

c2+d2≥5

(ceiθ/2 + de−iθ/2)−k

Lemma 4.2. The term M2 is never positive in the interval
π

2
≤ θ ≤ 2π

3
. Fur-

thermore, |M2| ≤ 1

Proof. Taking the derivative of M2, we get

k

2

(
−
(
−1

4

) k
2

cos

(
θ

2

)
sin−k−1

(
θ

2

)
− tan

(
θ

2

)(
2 csc

(θ
2

))−k)
,

which is clearly negative on
π

2
≤ θ ≤ 2π

3
. Therefore,M2 is decreasing. We evaluate

this at θ =
π

2
and at θ =

2π

3
.

At θ = π/2,M2(θ) = 2−
k
2

(
(−1)

k
2 − 1

)
which is less than or equal to 0 and greater

than or equal to −1

4
.

At θ = 2π/3, M2(θ) =

(
−1

3

) k
2

− 1 which is less than or equal to −4

5
and greater

than or equal to −1.
Hence, |M2| ≤ 1. �

Lemma 4.3. The number of zeros of M1 in

(
π

2
,

2π

3

)
is m(k + 2).

Proof. This argument is similar to the one used by Rankin and Swinnerton-Dyer
in [5].

Write θ =
2mπ

k + 2
and k + 2 = 12n + s, where s = 4, 6, 8, 10, 0 or 14. Then

M1(θ) = 2 cos(mπ) which is either 2 or −2 depending on whether m is odd or

even. Hence the number of zeros of cos

(
kθ

2
+ θ

)
in

(
π

2
,

2π

3

)
is equal to the
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number of integers in the closed interval

[
k + 2

4
,
k + 2

3

]
minus one, which can be

verified to be m(k + 2). �

Lemma 4.4. M =M1 +M2 has m(k + 2) zeros in
(π

2
,

2π

3

)
.

Proof. Since 2 cos(mπ) is either 2 or −2, and M2 is less than or equal to 1 in
absolute value, then M1 +M2 has the same number of zeros as M1. �

Therefore, it only remains to show that E1(θ) + E2(θ) is less than one. We will
use the estimates provided in [5].

Since we know that Rk

(
Ek(z)

)
z
k+2
2 is real valued on the bottom arc of F by

Lemma 3.5, then we have that Rk

(
Ek(z)

)
z
k+2
2 = Re

[
Rk

(
Ek(z)

)
z
k+2
2

]
, which is

equal to

(12) k
(
M+ Re(E1) + Re(E2)

)
Since Re[z] ≤ |z| we will provide bounds for the absolute values of the remaining
parts. We will show that the sum of these two absolute values is less than 1.

Lemma 4.5.
∣∣∣Re(E1)

∣∣∣ < 0.44

Proof.

Re
[
− ieiθ/2

∑∑
c2+d2≥5

c(ceiθ/2 + de−iθ/2)−k−1
]
≤
∣∣∣− ieiθ/2∑∑

c2+d2≥5

c(ceiθ/2 + de−iθ/2)−k−1
∣∣∣

=
∣∣∣∑∑
c2+d2≥5

c(ceiθ/2 + de−iθ/2)−k−1
∣∣∣

≤ 2
(

4
(5

2

)−k/2
+

∞∑
N=10

5N1/2
(1

2
N
)−k/2)

which is decreasing on k and at k = 8 is less than 0.44. �

Lemma 4.6.
∣∣∣Re(E2)

∣∣∣ < 0.26

Proof.

Re
[eiθ
y

1

2

∑∑
c2+d2≥5

(ceiθ/2 + de−iθ/2)−k.
]
≤
∣∣∣eiθ
y

1

2

∑∑
c2+d2≥5

(ceiθ/2 + de−iθ/2)−k.
∣∣∣

=
∣∣∣eiθ
y

∣∣∣∣∣∣1
2

∑∑
c2+d2≥5

(ceiθ/2 + de−iθ/2)−k
∣∣∣

≤ 2√
3

(
4
(5

2

)−k/2
+

∞∑
N=10

5N1/2
(1

2
N
)−k/2)

which is decreasing on k and at k = 8 is less than 0.26. �

Lemma 4.7.
∣∣∣Re(E1) + Re(E2)

∣∣∣ < 1

Proof. By Lemma 4.5 and Lemma 4.6, we have that
∣∣∣Re(E1)+Re(E2)

∣∣∣ < .7 < 1 �
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5. Jacobian

Let f be a modular form. Recall the Cauchy-Riemann equations:

(13)
∂u

∂x
=
∂v

∂y

(14)
∂u

∂y
= −∂v

∂x

Write f = u+ iv. Then,

Rk(f(z)) = 2i
∂f

∂z
+
k

y
f = −2

∂

∂y
f +

k

y
f = −2uy +

k

y
u+ i

(
− 2vy +

k

y
v
)
.

Let a = −2uy +
k

y
u and b = −2vy +

k

y
v. Then Rk(f) = a+ ib.

The aim of this section is to calculate the Jacobian of Rk(f).

J(Rk(f)) = axby − aybx.

From the Cauchy-Riemann equations, one can obtain the following useful iden-
tities:

uyy = −uxx, vyy = −vxx,(15)

uyx = −vxx, vyx = cxx.(16)

Anticipating a simplification, define

A = vxx, B = uxx, C = vy, D = uy,(17)

X = 2A+
k

y
C, Y = 2B +

k

y
D.(18)

Theorem 5.1. Let f ∈Mk. Then Jac(Rkf) = X2 + Y 2 − k

y2

(
uY + vX

)
.

We will separate the calculation in several parts:

5.1. axby.

We begin by calculating ax:

ax =
∂

∂x

(
− 2uy +

k

y
c
)

= −2uyx +
k

y
ux

Now by.

by =
∂

∂y

(
− 2vy +

k

y
v
)

= −2vyy +
k

y2
v +

k

y
vy
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Multiplying these two:

axby = 4uyxvyy +
2k

y2
uyxv −

2k

y
uyxvy −

2k

y
vyyux −

k2

y3
uxv +

k2

y2
uxvy

= 4vxxvxx −
2k

y2
vxxv +

4k

y
vxxvy −

k2

y3
vyv +

k2

y2
vyvy

5.2. aybx.

We begin by calculating ay:

ay =
∂

∂y

(
− 2uy +

k

y
c
)

= −2uyy +
k

y2
u+

k

y
uy

Now bx.

bx =
∂

∂x

(
− 2vy +

k

y
v
)

= −2vyx +
k

y
vx

Multiplying these two:

aybx = 4vyxuyy +
2k

y2
vyxu−

2k

y
vyxuy −

2k

y
uyyvx −

k2

y3
vxu+

k2

y2
vxuy

= −4uxxuxx +
2k

y2
uxxu−

4k

y
uxxuy +

k2

y3
uyu−

k2

y2
uyuy

5.3. axby − aybx.

Adding these, we obtain

4(vxxvxx + uxxuxx)− 2k

y2

(
vxxv + uxxu

)
+

4k

y

(
vxxvy + uxxuy

)
− k2

y3

(
vyv + uyu

)
+
k2

y2

(
vyvy + uyuy

)
Then Jac(Rkf) = X2 + Y 2 − k

y2

(
uY + vX

)
. Writing ay and by in terms of

X,Y, u and v, we get

by = X − k

y2
v,(19)

ay = Y − k

y2
u.(20)

Then, when a = b = 0 we have

(21) Jac(Rkf) =
(
by +

vy
y

)2

−
v2
y

y2
+
(
ay +

uy
y

)2

−
u2
y

y2
.
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If f is the weight k Eisenstein series, then,

v = − 2k

Bk

∞∑
n=1

σk−1(n)e−2πny sin(2πnx)(22)

u = 1− 2k

Bk

∞∑
n=1

σk−1(n)e−2πny cos(2πnx).(23)

Question 5.1. If f ∈Mk, does the Jacobian of Rkf vanish?

6. Conjectures and Future Work

Let Rjk = Rk+2j−2 ◦ · · · ◦Rk+2 ◦Rk and suppose f is a modular form of weight
k. Then,

(24) Rjk(f) =

j∑
r=0

(−1)r4r
(
j

r

)
(k + r)j−r
yj−r

Drf

where (a)m = a(a+ 1) · · · (a+m− 1) is the Pochhammer symbol. See (4.15) of [4]
for details.

Also, it can be shown that

(25) E
(j)
k =

(−1)j(k)j
2(2πi)j

∑∑
gcd(c,d)=1
c,d∈Z

cj(cz + d)−(k+j)

Hence, in the case of Eisenstein series, we have

(26) Rjk(Ek(z)) =
(k)j
2yj

j∑
r=0

(−2iy)r
(
j

r

)∑∑
cr(cz + d)−(k+r)

Conjecture 6.1. All of the zeros of Rk(Ek(z)) inside the fundamental domain lie
on A.

Conjecture 6.2. Rjk (Ek) has the same amount of zeros as Ek+2j. Furthermore,

all of the zeros of Rjk (Ek) inside the fundamental domain lie on A.

Conjecture 6.3. ReEk(z) > 0 on the interior of F .
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