
Strong Solution to Smale’s 17th Problem for Strongly Sparse

Systems

Paula Burkhardt

Pomona College and Texas A&M University

July 24, 2014

Abstract

Smale’s 17th problem asks whether one can deterministically approximate a single
root of a system of polynomials, in polynomial-time on average. The best recent
results are probabilistic polynomial-time algorithms, so Smale’s 17th Problem has not
yet been fully solved. We give a much faster deterministic algorithm for the special case
of binomial systems, and certain systems of binomials and trinomials. Our approach is
also a stepping stone to harder variants of Smale’s 17th Problem, such as approximating
roots near a query point or approximating a single real root.

1 Introduction

Smale’s 17th Problem asks: Does there exist a deterministic algorithm which approximates
a root of a system on polynomials and runs in polynomial time on average? We present
polynomial-time (or faster) algorithms for the cases of univariate binomials and systems of
binomials, and a partial algorithm for trinomials. Our approach to this problem is novel in
that it focuses on the number of monomial terms of a given polynomial. The coefficients
of our polynomials are random variables whose coefficients are selected from a complex
normal distribution (we discuss the significance of these distributions later in the paper).
We begin with the question of approximating the dth root of a complex number and reduce
more elaborate systems to this case.

1.1 Some Definitions

Here we recall some definitions due to Smale. Let || · || denote the Euclidean norm or the
operator norm as appropriate. Then we have:

1

Definition – Approximate Root (Smale [1986]). Suppose f : Cn → Cn is a multi-
variate polynomial. Let z ∈ Cn be a point such that

||ζ −Nk
f (z)|| ≤ 1

22k − 1
||ζ − z||

where Nf is the Newton operator, z 7→ z−Df(z)−1f(z), and ζ is an actual root of f . Then
we say z is an approximate root of f with associated true root ζ.

We work with polynomials whose coefficients are random variables selected from com-
plex normal distributions. We will discuss the question of selecting appropriate probability
density functions in greater detail later in this paper.

1.2 α-Theory

Here we recall some results of Smale.

Definition – α, β, and γ (Smale [1986]). For an analytic function f : Cn → Cn and
z ∈ Cn define the following:

γ(f, z) := sup
k≥2

∣∣∣∣∣
∣∣∣∣∣f ′(z)−1f (k)(z)k!

∣∣∣∣∣
∣∣∣∣∣

1
k−1

β(f, z) := ||f ′(z)−1f(z)||

and
α(f, z) := β(f, z)γ(f, z)

These items are useful for providing lower bounds on the possible distance of an ap-
proximate root from its associated true root, as we see below.

γ-Theorem (Smale [1986]). Let f : Cn → Cn be analytic, and suppose ζ ∈ Cn such that
f(ζ) = 0. Then if

||z − ζ|| ≤ 3−
√

7

2γ(f, ζ)

z is an approximate root of f with associated true root ζ.

A somewhat stronger result by Smale gives us that

α-Theorem (Smale [1986]). There exists a universal constant α0 such that if z ∈ Cn
with α(f, z) < α0 then z is an approximate root of f .

Smale gives a lower bound for α0 as 0.1370707, though less conservative bounds have
since been found.

2

1.3 Some Useful Results

We would like to come up with a lower bound on 3−
√
7

2γ(f,ζ) in order to approximate our roots.

Lemma. For any univariate polynomial f(x1) = c1x
a1
1 + . . .+ ctx

at
1 where c1, . . . , ct ∈ C∗

and a1, . . . , at ∈ N with 0 < a1 < . . . < at we have that γ(f, z) ≤
∣∣at−1

2z

∣∣ for all z ∈ C.

Proof.

γ(f, x) = sup
k≥2

∣∣∣∣c1a1 · · · (a1 − k + 1)xa1−k + . . .+ ctaa · · · (at − k + 1)xat−k

k!(c1a1xa1−1 + . . .+ ctatxat−1)

∣∣∣∣
1

k−1

= sup
k≥2

∣∣∣∣(1

k!xk−1

)(
c1a1 · · · (a1 − k + 1) + . . .+ ctat · · · (at − k + 1)xat−a1

c1a1 + . . .+ ctatxat−a1

)∣∣∣∣ 1
k−1

≤ sup
k≥2

∣∣∣∣(1

k!xk−1

)(
c1a1(at − 1)k−1 + . . .+ ctat(at − 1)k−1xat−a1

c1a1 + . . .+ ctatxat−a1

)∣∣∣∣
1

k−1

≤ sup
k≥2

∣∣∣∣(at − 1)k−1

2k−1xk−1

∣∣∣∣
1

k−1

=

∣∣∣∣at − 1

2x

∣∣∣∣
This upper bound on γ gives us a lower bound on 3−

√
7

2γ(f,c
1
d)

where f(x1) := xd1 − c is a

univariate polynomial:

Example. If |c| > 1 then if z ∈ C satisfies

|z − c
1
d | ≤ 1

3d
≤ 3−

√
7

d− 1
|c

1
d |

then z is an approximate root of f associated with c
1
d . Otherwise if 0 < |c| < 1 and z

satisfies

|z − c
1
d | ≤ 3−

√
7

d
|c| ≤ 3−

√
7

d− 1
|c

1
d |

then z is an approximate root of f associated with c
1
d .

This example becomes useful to us when we approximate a root of a univariate binomial.

2 An Algorithm for Univariate Binomials

In this section we present algorithms for approximating a root of a system of binomials.
We begin with the question of a monic univariate binomial and extend our method to other
systems of binomials.

3

2.1 Approximating a dth Root of a Positive Number

Since complex numbers can be written in polar form with some real, nonnegative radius,
it is useful to consider methods for approximating the dth root of some positive number.
We use the bisection method, which we formalize as follows:

Bisection Algorithm. Input: A positive number c and the desired exponent d. Let ε be

a lower bound on 3−
√
7

2γ(f,c
1
d)

.

1. If c = 1 return 1. Else, if c > 1 set a = 0 and b = c. Otherwise set a = 0 and b = 1.

2. Compute mid = b−a
2 .

3. Evaluate f at mid.

4. If f(mid) = 0 or the algorithm has been applied log2(c) − log2(ε) (resp. − log2(ε))
times, return mid. Else if sgn(f(mid)) = sgn(f(a)) set a = mid and repeat steps
2-4. Otherwise set b = mid and repeat steps 2-4.

*sgn is the sign function

The algorithm can be implemented fairly simply. We include some sage code below:

def approxAux(f, a, b, n, N):

mid = (float(a)+float(b))/float(2)

if (sign(f(mid))==0) or (n>=N):

return mid

elif sign(f(mid))==sign(f(a)):

return approxAux(f,mid,b,(n+1),N)

else:

return approxAux(f,a,mid,(n+1),N)

def bisectionApprox(f, a, b, eps):

n = 1

N = (logInt((b-a),2))-logInt(eps,2)

return approxAux(f,a,b,n,N)

Note that in order to count the number of iterations we must compute log2(c) − log2(ε).
However, a fairly simple algorithm which tests repeated powers of two that runs in time
log2(a) can be used to approximate dlog2(a)e for real number a. We exclude this process
from our discussion for the sake of simplicity. We would like to use the bisection method
in approximating dth roots of a complex number. First we give the following lemma:

Lemma. A root of a random binomial of the form f(x1) := xd1 − c for c > 0 and d ∈ N
can be approximated to within ε in time O(log(ε) log(d)2) on average using the bisection
method.

4

Proof. After k iterations of the bisection algorithm we have |mid−ζ| ≤ c
2k

(resp. 1
2k

. Thus
applying the bisection algorithm log2(c) − log2(ε) (resp. − log2(ε)) times will return mid
such that

|mid− ζ| ≤ cε

c
≤ 3−

√
7

2γ(f, c
1
d)

and similarly for the case where 0 < |c| < 1. The complexity of evaluating xd1 − c at each
iteration is O(log(d)2) on average. Thus the overall average complexity of approximating

c
1
d is O(log(ε) log(d)2).

2.2 The Algorithm

We present a method for approximating the roots of a univariate binomial with complex
coefficients. The key observation is that for a complex number c written in polar form as

reiθ, we have that c
1
d = r

1
d e

iθ
d .

Univariate Binomial Algorithm. Input: A univariate polynomial f(x1) := c1 + c2x
d
1.

1. Let c = c1
c2

. If |c| ≥ 1 let ε = 1
3d . Otherwise if 0 < |c| < 1 let ε = 3−

√
7

2 |c|.

2. Let r = |c| and approximate r
1
d to within ε

5 using bisection. Call this approximation
r0.

3. If c is written a + bi, the argument of c can be computed in terms of arctan(ba).

Approximate the argument of c, θ, by approximating arctan
(
b
a

)
with Taylor series.

Truncate the Taylor series after
5
dε
−3
2r terms if r ≥ 1 and after

5
dε
−3
2 terms otherwise.

Call this approximation α. Note that if the coefficients are entered in polar form this
step is not necessary.

4. If |r| ≥ 1 let k = max{
dlog π

2
(ε
5r

)e
2 − 2,

dlog 1
2
(ε8!
5r8828

)e+8

2 }, to ensure that k is positive.

Otherwise let k = max{
dlog π

2
(ε
5
)e

2 − 2,
dlog 1

2
(ε8!
58828

)e+8

2 }.

5. Approximate ei
α
d via Taylor series. Truncate the Taylor series after k terms and call

the approximations for the real and imaginary components sk and tk respectively.

6. Return r0(sk + itk).

An implementation of this algorithm is below:

def monicBinomApprox(c1,c2,d):

c = c1*(c2^(-1))

def binom(x):

return x^d+c

5

r = abs(c)

if r > 1:

eps = 1.0/float(15*d*r)

alph = argTaylor(-c,1.0/float(15*r))

r0 = bisectionApprox(binom, 0, r, eps)

sk = cos(float(alph)/float(d), eps/r0)

tk = sin(float(alph)/float(d), eps/r0)

return r0*(sk+I*tk)

elif r == 1:

eps = 1.0/float(15*d*r)

r0 = 1

alph = argTaylor(-c,1.0/float(15*r))

sk = cos(float(alph)/float(d), eps)

tk = sin(float(alph)/float(d), eps)

return r0*(sk+I*tk)

else:

eps = float((3-sqrt(7))*r)/float(5*d)

alph = argTaylor(-c,float((3-sqrt(7))*r)/5.0)

r0 = bisectionApprox(binom, 0, 1, eps)

sk = cos(float(alph)/float(d), eps)

tk = sin(float(alph)/float(d), eps)

return r0*(sk+I*tk)

Our implementation makes use of auxiliary functions “argTaylor”,“sin”, and “cos” which
compute the Taylor series approximations of arctan(ba), sin(αd) and cos(αd). We now prove
that our algorithm returns an approximate root of f .

Proof. We begin with the case where |c| ≥ 1. By the triangle inequality and the Mean
Value Theorem we have that

|r
1
d e

iθ
d − r0(sk + itk)|

≤ r
1
d

∣∣∣∣cos

(
θ

d

)
− cos

(α
d

)∣∣∣∣+r 1
d

∣∣∣∣i sin

(
θ

d

)
− i sin

(α
d

)∣∣∣∣+∣∣∣r 1
d − r0

∣∣∣+r0 ∣∣∣cos
(α
d

)
− sk

∣∣∣+r0 ∣∣∣i sin
(α
d

)
− itk

∣∣∣
≤ r

1
d |θ
d
− α

d
|+ r

1
d |θ
d
− α

d
|+ ε

5
+
|α|2k+2

(2k + 2)!
+
|α|2k+3

(2k + 3)!

≤ 1

d

1

2
(5
dε
−3
2

)
+ 3

+
1

d

1

2
(5
dε
−3
2

)
+ 3

+
ε

5
+

π2k+2

(2k + 2)!
+

π2k+3

(2k + 3)!

≤ ε

5
+
ε

5
+
ε

5
+

π2k+2

(2k + 2)!
+

π2k+3

(2k + 3)!

6

Because 2k + 3 > 2k + 2 ≥ 2 > π
2 , the sequence {πjj! } is strictly decreasing for j ≥ π

2 , and

2j ≤ j! for j ≥ 2, we have

π2k+3

(2k + 3)!
≤ π2k+2

(2k + 2)!
≤
(π

2

)2k+2
≤ ε

5

Thus we have
|r

1
d e

iθ
d − r0(sk + itk)| ≤

ε

5
+
ε

5
+
ε

5
+
ε

5
+
ε

5
= ε

2.3 Average-Case Complexity

We now examine the computational complexity of our algorithm for approximating a root
of a univariate binomial.

Proposition. The algorithm for approximating a root of a univariate binomial to within a
given ε has computational complexity O(log(ε) log(d)2+log(d)+log(ε)+log(ε)3(log(log(ε))2).
In particular, the algorithm has average case complexity O((log d)3(log log d)2).

Proof. The complexity of approximating the dth root of |c| to within ε
5 is O(log(ε) log(d)2).

Computing the value of the Taylor series approximation for the argument of c has computa-

tional complexity O(log(ε)2 +log(d)2). Computing the Taylor series approximation for e
iα
d

has computational complexity O(log(ε)3 log log(ε)2+log(ε) log log(ε): O(log(ε)3 log log(ε)2)
bit operations to compute the denominators and O(log(ε) log log(ε) to compute the numer-
ators of the summands. For sufficiently large ε,

log(ε)3 log log(ε)2 + log(ε) log log(ε) ≤ 2 log(ε)3 log log(ε)2

Thus the overall computational complexity of approximating a dth root of c to within ε is
O(log(ε) log(d)2 + log(d) + log(ε) + log(ε)3(log(log(ε))2).

To return an approximate root according to Smale’s definition, our ε = O(d). Thus
the average case complexity of our algorithm is O(log(d)3 + log(d) + (log d)3(log log d)2) =
O((log d)3(log log d)2).

Note that we can also use this approximation to find a non-zero root of a binomial
c1x

a1
1 +c2x

a2
1 : Assume WLOG that a1 < a2 and and apply the algorithm for approximating

a root of a univariate binomial to the binomial f(x1) := c1 + c2x
a2−a1
1 , except instead of

approximating a root to within 1
3(a2−a1) (or 3−

√
7

(a2−a1)

∣∣∣ c1c2 ∣∣∣) we approximate a root to within 1
3a2

(or 3−
√
7

a2

∣∣∣ c1c2 ∣∣∣). The ability of this algorithm to approximate a nonzero root of a univariate

binomial with a root at zero will become useful when we look at certain types of trinomials.

7

3 An Algorithm for Multivariate Binomial Systems

We have thus far considered univariate binomials. In this section we present algorithms
for approximating the roots of n-variate systems of binomials. We first introduce some
machinery which will become useful when examining this case.

3.1 Matrix Exponentiation and the Smith Normal Form

For a vector x = (x1, . . . , xn) ∈ Cn and an n× n matrix of integers A = {aij} define

xA := (xa111 · · ·x
an1
n , . . . , xa1n1 · · ·xannn)

This notation relates matrices and systems of binomials. For instance, for a system of
binomials

f(x) :=


xa1 − c1

...
...

xan − cn

=


xa111 xa122 · · ·xa1nn − c1

...
...

xan11 xan22 · · ·xannn − cn

we can instead write f(x) := xA− c where c = (c1, . . . , cn). Relating matrices and systems
of binomials in this way allows us to use some of the techniques performed on matrices
when approximating roots of a system of binomials.

Definition – Smith Normal Form. We say that an n× n integer matrix S is in Smith
Normal Form if

1. It is diagonal

2. Its entries are positive

3. If S =

 d1 . . . 0
...

. . .
...

0 . . . dn

 then di | di+1∀i ∈ {1, . . . , n}

Proposition. For any n×n matrix of integers A there exists a unique S such that UAV =
S for some U, V ∈ SL(n,Z).

Theorem (Kannan and Bachem [1979]). There exists an algorithm which returns the
Smith Normal Form of a given nonsingular n × n matrix A and the multipliers U and V
and runs in time polynomial in n and max |aij | where A = {aij}.

Kannan and Bachem also present such an algorithm explicitly. We use their algorithm
to convert general systems of binomials to diagonal binomial systems.

8

3.2 The Algorithm

Approximating a root of an n-variate system of binomials f requires computing an upper

bound for 3−
√
7

2γ(f,z) , now with z ∈ Cn. We have that

Lemma (Phillipson [2014]). For a diagonal system of binomials f : Cn → Cn and
x = (x1, . . . , xn) we have that

γ(f, x) ≤
√

2nX max{|x−ai1 |}||x||d−21 d2

2

where X = max{|xi|} and ||x||1 =
√

1 +
∑n

i=1 |xi|2

Thus for a true root ζ = (ζ1, . . . , ζn) we have that

γ(f, ζ) ≤

√
2n||c||∞max{ 1

|ci|}||c||1d
2

2

if ||c|| > 1 and

γ(f, ζ) ≤

√
2nmax{ 1

|ci|}d
2

2

otherwise.

Algorithm for Diagonal Systems of Binomials. Input: a diagonal system of binomials
xa11 − c1

...
...

xann − cn

where each ai ∈ Z.

1. Let ε be 3−
√
7√

2n||c||∞max{ 1
|ci|
}||c||1d2

if ||c|| > 1 and 3−
√
7√

2nmax{ 1
|ci|
}d2 otherwise.

2. Approximate each ζi to within ε√
n

using our algorithm for approximating the roots of

a univariate binomial and call the approximation αi.

3. return α = (α1, . . . , αn).

We show that our algorithm does indeed return an approximate root of f :

Proof.

||α− ζ|| ≤
√
nmax

i
{|αi − ζi|}

√
nε√
n

= ε

9

3.3 Average-Case Complexity

Proposition. The average case complexity of the algorithm for diagonal systems of bino-
mials is O((log(d) + log(n)) log(d)2n+ (log(d) + log(n))3 log(log(d) + log(n))n).

Proof. Recall that the computational complexity of our algorithm for approximating a root
of a univariate polynomial to within ε isO(log(ε) log(d)2+log(d)+log(ε)+log(ε)3(log(log(ε))2).
For us, ε = O(log(d) + log(n). Plugging in this value for ε reduces to O((log(d) +
log(n)) log(d)2n+ (log(d) + log(n))3 log(log(d) + log(n))n).

We hope to use the Smith Normal Form and Kannan and Bachem’s algorithm to reduce
more general systems of binomials to the case of a diagonal system of binomials. In the
future we hope to provide a sufficiently small upper bound on γ(f, x) for a general system
of binomials f so that our algorithm will run quickly.

4 A Partial Algorithm for Univariate Trinomials

In this section we present an algorithm for approximating a root of a certain kind of
univariate trinomial. We do this by reducing the trinomial to its “lower binomials” and
applying some results from α-theory.

4.1 Some Background

Definition – Convex Hull. Let S be a finite subset of Rn. The convex hull of S is

Conv(S) := {
∑t

i=1 αixi|αi ≥ 0,
∑t

i=1 αi = 1}.

Definition – Archimedean Newton Polytope. For f(x1) := c1x
a1
1 + . . . + ctx

at
1 ∈

C[x1] \ {0} we define

ArchNewt(f):=Conv({(ai,− log |ci|)|i ∈ {1, . . . , t}}).

Definition – Lower Polynomial. For f(x1) := c1x
a1
1 + . . . + ctx

at
1 ∈ C[x1] \ {0} with

0 < a1 < . . . < at we define g(x1) :=
∑

i∈I cix
ai
1 to be a lower polynomial of f if and

only if there exists w ∈ R such that {(ai,− log |ci|)|i ∈ I} is exactly the intersection of
{(ai,− log |ci|)|i ∈ {1, . . . , t}} with the face of ArchNewt(f) that has outer normal (w,−1).

In particular, for a univariate trinomial f(x1) := 1 + cxd ± xD we have that the lower
polynomials of f are

• 1± xD if |c| < 1

• f if |c| = 1

• 1 + cxd and cxd ± xD if |c| > 1

10

Because we already have an algorithm for approximating a root of a binomial, we would
like to reduce the case of trinomials to a question of approximating a root of a binomial.
Some results of Avendaño will be useful:

Definition – W -property (Avendaño [2008]). f(x1) := c1x
a1
1 + . . . + ctx

at
1 ∈ C[x1].

We say f has the W -property iff the following implication holds: (ai,− log |ci|) is within
vertical distance W of the lower hull of ArchNewt(f) =⇒ (ai,− log |ci|) is a lower vertex
of ArchNewt(f).

Proposition (Avendaño [2008]). Let f(x1) := c1x
a1
1 + . . .+ ctx

at
1 ∈ C[x1]. If f satisfies

the W -property with W ≥ max{log2(2td), log2(4t
2d2/0.03} (where d = max{ai}) then any

nonzero root x of a lower polynomial of f satisfies α(f, x) < 0.03.

Robust α-Theorem (Blum et al. [1998]). There is a positive real number u0 ≥ 0.05
such that if α(f, z) < 0.03, then there is a root ζ of f such that

B

(
u0

γ(f, z)
, z

)
⊂ B

(
3−
√

7

2γ(f, ζ)
, ζ

)

4.2 The Algorithm

Partial Algorithm for Trinomials. Input: A univariate trinomial f(x1) := c1 + c2x
d
1 +

c3x
D
1 .

1. If d = 1 and D = 2 use the quadratic formula to solve for the roots of f .

2. If c1 6= 1 or c3 6= ±1 then define the following constants: µ = 1
c1

, ρ =
(
c1
c3

) 1
D

, and

ν = c2
c1

(
c1
c3

) d
D

.

3. Define g(x1) = f(ρx1), so that µg(x1) = 1 + νxd1 ± xD1 .

4. If µg has the W -property, we perform steps 4-6: use the algorithm for monic uni-
variate binomials to approximate a root of the lower binomial of degree D to within

ε
(3−
√
7)20

, where ε is as in the univariate binomial case. Call this approximation α0.

5. Approximate ρ =
(
c1
c3

) 1
D

to within ε
(3−
√
7)20| c1

c3
| if

∣∣∣ c1c3 ∣∣∣ ≥ 1 and to within ε
(3−
√
7)20

otherwise, and call the approximation p.

6. Let α = pα0 and return z.

We now show that this algorithm returns an approximate root of f .

11

Proof. Observe that
µf(ρx1) = µc1 + µc2ρ

dxd1 + µc3ρ
DxD1 x

=

(
1

c1

)
c1 +

c2
c1

(
c1
c3

) d
D

xd1 +
c3
c1

(
c1
c3

)
xD1

= 1 + νxd1 ± xD

How do we use this reduction to approximate the roots of f? Define g(x1) := f(ρx1), so
that µg(x1) = 1 + νxd1 ± xD1 . Note that

γ(µg, z) = sup
k≥2

∣∣∣∣∣µg(k)(z)µg′(z)k!

∣∣∣∣∣
1

k−1

= sup
k≥2

∣∣∣∣∣g(k)(z)g′(z)k!

∣∣∣∣∣
1

k−1

= γ(g, z)

and

β(µg, z) =

∣∣∣∣ µg(z)

µg′(z)

∣∣∣∣ =

∣∣∣∣ g(z)

g′(z)

∣∣∣∣ = β(g, z)

Thus α(µg, z) = α(g, z). Also, by Avendaño we have that α(g, z) = α(f, ρz). We also know
that if ζ is a true nonzero root of a lower binomial of µg the α(µg, ζ) < α0. Thus we have
that if ζ is a true nonzero root of the lower binomial of degree D of µg, then α(f, ρζ) < α0.
All that remains to be done is to pick some z within u0

γ(f,ρζ) of ρζ. By Avendaño we have

that |ρ|γ(f, ρζ) = γ(g, ζ) ≤
∣∣∣D−12ζ

∣∣∣, so γ(f, ρζ) ≤
∣∣∣D−12ζ|ρ|

∣∣∣. If we pick α according to our

algorithm then we have that

||α−ρζ|| ≤ |p|||α0−ζ||+|p−ρ| ≤ min

 ε

(3−
√

7)10
,

ε

(3−
√

7)10
∣∣∣ c1c3 ∣∣∣

 ≤ ε

(3−
√

7)10|ρ|
≤ u0
γ(f, ρζ)

Then by the Robust α Theorem z is an approximate root of f .

4.3 Computational Complexity

Proposition. The average case complexity of approximating a root of a univariate trino-
mial using our algorithm for univariate trinomials is O((logD)3(log logD)2).

Proof. If f is a quadratic, then computing a root of f takes a constant number of bit
operations on average, since on average each coefficient of f is a constant. Otherwise
we claim that f satisfies the W -property in the average case. When f satisfies the W -
property approximating a root is simply a matter of performing the algorithm for univariate
binomials twice, with ε rescaled by a constant. Thus the computational complexity o
the algorithm is unchanged. We claim that on average f satisfies the W -property when
it is not a quadratic, so the average case computational complexity of the algorithm is
O((logD)3(log logD)2).

12

4.4 A Discussion of Probability

In our analysis of the complexity of approximating a root of a univariate trinomial f with
our algorithm we claimed that on average f satisfies the W -property. We discuss this
assertion here. Smale does not specify a particular random variable for the coefficients of a
random polynomial, so we use complex Gaussians with variances specified in this manner:
If f = c1x

a1
1 + . . . + ctx

at
1 where 0 < a1 < . . . < at we let ci be chosen from a complex

normal distribution with variance
(
at
ai

)
. In particular, for a trinomial 1 + νxd1 ± xD, ν is

chosen from a complex normal distribution with variance
(
D
d

)
. Let r denote the expected

value of |ν|. Then

r =

√
π

4
σ3

d < D gives us that
(
D
d

)3 ≥ 4√
π

so the expected value of |ν| is greater than 1. Thus on

average (d,− log |ν|) is a vertex of the lower hull of ArchNewt(f) and so f satisfies the
W -property.

5 Conclusion

We hope that the algorithms in this paper become useful for more elaborate systems
of polynomials. In particular, we plan to construct algorithms which run quickly and
approximate a root of a univariate trinomial which does not satisfy the W -property, as
well as extend our results to n-variate systems of trinomials. We also wish to improve
our algorithm for approximating roots of a system of binomials so that it runs in time
polynomial in only log(d) and log(n). Our methods also will hopefully provide us with
some tools to approach the questions of approximating a real root of a polynomial system,
or the nearest root of a system closest to some query point.

References

Mart́ın Avendaño. Unpublished notes, 2008.

Lenore Blum, Felipe Cucker, Mike Shub, and Steve Smale. Complexity and Real Compu-
tation. Springer-Verlag, 1998.

Ravindran Kannan and Achim Bachem. “Polynomial Algorithms for Computing the Smith
and Hermite Normal Forms of an Integer Matrix”. SIAM Journal on Computing, 8, 1979.

Kaitlyn Phillipson. Unpublished notes, 2014.

Steve Smale. “Newton’s Method Estimates from Data at One Point”. In The Merging of
Disciplines: New Directions in Pure, Applied, and Computational Mathematics, 1986.

13

