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Smale's 17th Problem

Smale’s 17th Problem

Does there exist a deterministic algorithm which approximates a
root of a polynomial system and runs in polynomial time on
average?




Approximate Roots

Definition — Approximate Root (Smale [1986])

Suppose f : C" — C" is a multivariate polynomial. Let z € C" be
a point such that

€= NE@)| < oo — 2

where Ny is the Newton operator, z — z — Df (z)~1f(z), and ( is
an actual root of f. Then z is an approximate root of f with
associated true root (.



Approximate Roots: v Theory

Definition — v (Smale [1986])

For f : C" — C" analytic in a neighborhood of z € C" et
1
f'(z) R (z) |

(f,2) := sup i

k>2

~ Theorem (Smale [1986])

Suppose f : C" — C" is analytic in a neighborhood of z containing
a root ¢ of f and that f'(C) is invertible. If

3- V7
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then z is an approximate root of f with associated true root (.




Approximate Roots: « Theory

Definition — 5 and « (Smale [1986])

For f : C" — C" analytic in a neighborhood of z € C" et

B(f,2) == |f'(2) " (2)]
and
a(f,z) = p(f, z)y(f, z)

a Theorem (Smale [1986])

There exists a universal constant oy such that if z € C" with
a(f,z) < ag then z is an approximate root of f.
Smale, 1986: o > 0.1370707.

Wang and Han, 1989: a9 > 3 — 2V/2.



Examples of v Theory

Lemma (B.)

For any univariate polynomial f(x1) = cixj* + ...+ cex3* where
cl,...,c¢ € C*and ay,...,as e Nwith0 < a; < ... < a; we have
that y(f, z) < ]afz—;l‘ for all z € C.

Example

Let f(x1) = xf! — c. z is an approximate root of f if |c| > 1 and

1 3—V7
2=l 55 < d—\1[|cb|
or0< c<1 and
1 37 3—V7 1
—cd| < < d
=3 < 2V g < SV



Consider f(x1) := x{ — c where ¢ >0 and d € N.
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The Bisection Method

The complexity of evaluating f at each iteration is O(log(d)?) and
we need no more than O(log(d) + log(c)) iterations so:

Lemma (B.)

A root of a random binomial of the form f(x1) := x{ — ¢ forc > 0

and d € N can be approximated in time O(log(d)3) on average
using the bisection method.



Monic Univariate Binomials

What if c is complex? Let ¢ = a+ bi = re'” and observe that
C§ = r%e%_

Algorithm for Monic Univariate Binomials

Approximate rd to within ¢ using bisection. Call this
approximation ry.

Approximate 6 by approximating arctan (g) to within % with

Taylor series. Call this approximation c.

Approximate e'd to within & via Taylor series. Call the
approximations for the cosine and sine components s, and ty
respectively.

Return rg(Sk aF itk).



Monic Univariate Binomials

Recall that our approximate root is ro(sk + itk).
m s, and ty are kth partial sums where k = O(log d)

m The complexity of computing sx and ty is then
O(log d((log d)? + (log d)?(log log d)?)).

Proposition (B.)

The average complexity of our algorithm is O((log d)3(log log d)?):
better than polynomial in d.



d

Consider f(x1) := c1x{ — ¢z for d € N and ¢, o € C*. Note that
f(z) =0 < z

c
_2_9
o]
_ o ; ;
so let ¢ = e and apply our algorithm for the monic case.

DA



Binomial Systems

X1 —a
For a diagonal system of binomials f(x1,...,%,) = :
5 = @
and x = (x1,...,xn) € C" we have
—aj d—2
(Fx) < v2nX max{|x; [ }|x||{*d?
2
where all a; € 7.\ {0}, d = max{a;}, ¢; € C, X = max{|x|}, and

[Ixll1 = 1+ |Ix]?.

For a general system of binomials we have

VarrTIX maxd x|} Ix|I§2d"E
2

v(f,x) <



Binomial Systems: Diagonal Systems

Algorithm for Diagonal Binomial Systems

Input: A diagonal binomial system f.

Let € be an appropriate lower bound on 237*(7;/2) where

¢ =(C1,--.,Cn) Is a true root of the system.
Approximate each (; to within % by some «;.
Return oo = (o, . .., ;).
Lemma (B.)

On average the complexity of this algorithm is
O(n(dlog d)3 + n(d log d)3(log d + log log d))?)



Smith Normal Form

Definition —=Smith Normal Form

An n X n nonsingular matrix S is in Smith Normal Form if

It is a diagonal matrix

All of its entries are positive

d 0 ... 0
BI/fS= 0 | thend;|diy1Vie{l,..., n}.
0 ... 0 d,

Example —Smith Normal Form

o al=1o 2]l elle 7]




Smith Normal Form

For any n x n matrix A there exists a unique matrix S such that
UAV =S for U,V € SL(n,Z).

Theorem (Kannan and Bachem [1979])

There exists an algorithm which returns the Smith Normal Form of
a given nonsingular n X n matrix A and the multipliers U and V
and runs in time polynomial in n and max |a;;| where A = (aj;).




a =0 XX xfn — ¢ = 0
: s : : :
x — ¢, = 0 XX xqm — cp = 0
where each a; € Z" and ¢; € Cx, and x = (x1, x2,

ey Xn)-
1
on

. 7Xn)A - (Cl7 .

.,c,,)’ =0
where A is the matrix of exponents and / is the identity matrix.

I

S11 _ VAL ~Vel

X] ot ¢t =0
f(X1y.. oy Xn) =

S, Vi V) —
Xnnn _ Cl n., .. Cnnn

=0
=] F



General Binomial Systems

Algorithm for General Binomial Systems

A

Input: a general binomial system f(x) := x* — c.

Proposition

Use Kannan and Bachem's algorithm to put A into Smith
Normal Form: UAV = S.
/7

Let € be a suitable lower bound for % where ( is a true
root of f

Approximate the roots of the (diagonal) system x° — c¥ =0

e e : v
to within NG with some z = (z1,. .., z,).

Let o = zY and return a.

The above algorithm has average case complexity
O((n(log d + log n) + d)3(log(n(log d + log n) + d))?).



Trinomials: 1+ ox{ + xP

Example

For f(x1) := 1 + oxf! + xP with c € C\ {0} the lower polynomials

of f are
mlExPif0<|c|<1
mfiflc]=1

w1+ oxf and oxd £ xP if |c| > 1

(d, —Jog|c|) (0,0) D,0)

de —log|c|)
(0,0) D,0) (0,0)———D,0) (d,—log]|c|)



Trinomials: 1+ ox{ + xP

Definition — W-Property (Avendafio [2008])

Suppose f(x1) := cix;* + ...+ cexi* € C[x1]. We say f has the
W -property iff the following implication holds: (a;, — log |ci|) is
within vertical distance W of the lower hull of

ArchNewt(f) = (a;, — log |ci|) is a lower vertex of ArchNewt(f).

Proposition (Avendafio [2008])

Let f(x1) := 1+ ox! £ xP. If f satisfies the W-property with
W > log,(36D?) then any nonzero root x of a lower binomial of f
satisfies a(f, x) < ag.



Trinomials: 1+ ox{ + xP

Robust o Theorem (Blum et al. [1998])

There are positive real numbers o and ug such that if
a(f,z) < ag, then there is a root { of f such that

ug 37
8z < <27(f7C)’<>




Trinomials: 1+ ox{ + xP

Algorithm for 1 + cxf + xlD

Input: f(x1) := 1+ cx9 £ xP.
Ifd =1 and D = 2 use the quadratic formula to solve for the
roots of f.

Otherwise if f has the W-property, use the algorithm for
monic univariate binomials to approximate a root of the lower
. . o - . .
binomial of degree D to within GV’ where € is as in the
univariate binomial case.

Lemma (B.)

On average this algorithm has computational complexity
O((log d)3(log log d)?).



(=}

C
c1 c3

Let f(x1) := c1—|—c2x1d—|—C3x{3,u:ci1, p:(
d
()

pf(pxa) = per + peap?xt + pesp®xgx

:1+1/xf:|:xD

1
c \ D
C_3) , and
D, and observe that



m Handling trinomials that do not satisfy the W-property
m Systems of trinomials

m Approximating a real root or a root near a query point
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