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Review

Definition

A chemical reaction network G = {S,C, R} consists of three finite sets:
@ a set of species S,
@ a set C of complexes, and
© aset R CC xC of reactions
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Review

Definition

A chemical reaction network G = {S,C, R} consists of three finite sets:
@ a set of species S,
@ a set C of complexes, and
© aset R CC xC of reactions

Definition
The stoichiometric matrix I is the |S| x |R| matrix whose kth column is
the reaction vector of the kth reaction yx — y,, denoted(y, — yi)
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-
What's a Steady State?

The reaction kinetics system defined by a reaction network G is given by
the following system of ODEs:

() &

Where p(x) € Rg%l is the vector that encodes the reactants of the kth

reaction in its kth coordinate.
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-
What's a Steady State?

The reaction kinetics system defined by a reaction network G is given by
the following system of ODEs:

dx

X =T () M)

Where p(x) € Rg%l is the vector that encodes the reactants of the kth

reaction in its kth coordinate.
Definition

A steady state of a reaction kinetics system Z); =TI p(x) is a non-negative

concentration vector x* € leé for which I' - p(x*) = 0.

& P IAMES
TEXAS &y

ISON
ERSTTY.

Bryan Félix & Zev Woodstock IAn Infinite Family of Networks with Multiple Texas A&M REU, 2015 3/22



-
What's a Steady State?

The reaction kinetics system defined by a reaction network G is given by
the following system of ODEs:

() &

Where p(x) € Rg%l is the vector that encodes the reactants of the kth
reaction in its kth coordinate.
Definition

A steady state of a reaction kinetics system % =TI p(x) is a non-negative

concentration vector x* € Rg for which I - p(x*) = 0.

Definition

A steady state x* € R'fc‘, is nondegenerate if im(df(x*)) = im(I"), where

df (x*) denotes the Jacobian of the reaction kinetics system at x*.
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The Network Kmm

Definition

For positive integers n > 2, m > 1 we define the network Rm n of order n
and production factor m to be:

X1+ Xo—0
anl + Xn — 0
X1 — mX,
X,' — 0
0— X,'
TEXAS &8s,
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Theorem (Shiu & Joshi, 2015)

For positive integers n > 2 and m > 2, the fully open extension kmm is
multistationary if n is odd.

Xi+Xo—0
. Inflow Outflow
: > Internal >
Km,n =93X,-1+X,—0 Reactions
X1 — an
X0 Vie{l,2,..,n}

Conjecture (Shiu & Joshi, 2015)

For positive integers n > 2 and m > 2, if n is odd, then Rmy,, admits
multiple positive non-degenerate steady states.
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For any n, the system is given by,

X1+X2$0 X1 rﬂ>10 Orﬁl X1
0

Xo+Xs 20  Xp ¥ 0 8% X,
Reactions : : :
Xp-14+Xn 550 X1 50 075" Xo_g
X1 = mX3 X, 280 03 X,
X1 = —nX1X2 — IpX1 — Mt1X1 + fpyl
ODE’s X,' = —lri—1Xi—1Xj — FiXiXj+1 — 'h+iXi + Pn+ti, for 2 < i <n-— 1
Xn = —I—1Xn—1Xn + MraX1 — rpXp + 3p
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Jacobian Matrix

df(x)(l,l) =—NnXg —"rn—rn+1
df(x)1,2) = —nx

df(X)(,',,',l) =—ri_1x; Vi€ {2,3, ey, N — 1}
df (X)(iiy = —ri—1Xi—1 — FiXi41 = Moyl
df (X)(iiv1) = —rixi

df(x)(n,1) = mry
df(x)(n,nfl) = —Ih-1Xn
df(x)(n,n) = —Ih—1Xpn—1 — Nnp

.
P
TEXAS &
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Jacobian Matrix

—rX2 = fp = rnt1 —nxy 0 . 0 0
—nx; —nXy — X3 = rpy —rnx;
0 —rXx3 —rXp — 3X4 — Fpy3 - 0 0
0 0 —nxg S —In—2Xn—2 0
: —rn—2Xp—2 — n—1Xp — N2p-1 —rn—1Xp-1
mr, 0 0 —In—1Xn —In—1Xn—1 — 2n,

GOAL:

Find rates r; and two steady state concentrations, x*,x#, and show
Im(df(x)) = im(T).
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Our Approach: Backtrack the Determinant Optimization
Method

Theorem (Craicun & Feinberg, 2005)

If two conditions hold for a chemical reaction system, then it has the
capacity for at least two steady state equilibria.

The main conditions on internal and outflow reactions:

(1 ZTZ, vi—yl) € RS for positive numbers 11, ..., 1.

(1) det(y1, 2, .-, ¥n) - det((y1 — ¥1), (Y2 = ¥5), - (Yn — ¥2)) <0
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Stoichiometrix Matrix for R,m,,

(N Zn, yi—yl) € ]RS for positive numbers 11, ..., 1k.

1 0 O 1

11 0 0
—T1,.0n= 01 1 o |/

0 0 ° 0

0 0 1 —m

General solution: 7j,—1 = (m+ 1), 7j; = 1 for j # n— 1 is a solution.
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Stoichiometrix Matrix for R,m,,

(N Zn, yi—yl) E]RS for positive numbers 11, ..., 1k.
1 0 0 1
11 0 0
o=l 01 1 0 |
00 ° 0
0 0 - 1 —m

General solution: 7j,—1 = (m+ 1), 7j; = 1 for j # n— 1 is a solution.

Remark: Since the matrix [ contains the identity, it is full rank. Thus we
must show det(df(x)) # 0 for S.S. solutions x. J
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Overview: Finding S.S. Concentrations & Rates

o Extend 7j to describe all internal and outflow reactions, n~ € R?".
o Letp; = A forallie{1,2,. k}.

@ Otherwise, let 1. = e.

@ When n=3, 77 = (A, (m—+ 1)\ A\ €, ¢,€) for large A, small €.
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Overview: Finding S.S. Concentrations & Rates

Extend 7 to describe all internal and outflow reactions, n~ € R2".

°
o Letp; = A forallie{1,2,. k}.
@ Otherwise, let 1. = e.
@ When n=3, 77 = (A, (m—+ 1)\ A\ €, ¢,€) for large A, small €.
@ Define the augmented Jacobian,
T, =
(71 + 0 + Nt m 0 - 0 ]
m m + 2 + Nnt2 M e 0
0 7 .0
. 0 , _
0 ; “tr M2+ a1+ M2p1 Mn—1
—mg 0 M1 Nn—1+ 1, |

v
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N
Delta Vector

Property (II) guarantees that det(7,-) < 0. We can construct another 5"
with positive determinant.
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N
Delta Vector

Property (II) guarantees that det(7,-) < 0. We can construct another 5"
with positive determinant. By the IVT, we can find an ° such that

det(T,0) = 0. We use this to find 6 € RL‘Z‘) such that T,0 -6 = 0.
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Delta Vector

Property (II) guarantees that det(7,-) < 0. We can construct another 5"
with positive determinant. By the IVT, we can find an ° such that

det(T,0) = 0. We use this to find 6 € RL‘Z‘) such that T,0 -6 = 0.
Letting n° =~ for all entries excluding ngn, we see
[2X+¢ A 0 0 ]
A 2\ + € A e 0
0 A 2A+ € A 0
Tno = 0
0 : A+A(m+1)+e A(m+1)
| -m\A 0 A(m + 1) A(m+ 1) +n3, |
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|
Delta Vector
Property (II) guarantees that det(7,-) < 0. We can construct another 5"

with positive determinant. By the IVT, we can find an ° such that
det( Tno) = 0. We use this to find § € R'S‘

20 such that T,0 -0 =0.
Letting n° =~ for all entries excluding ngn, we see
[2) + € A 0 0 ]
A 2A+ € A - 0
0 A 2A+ € A 0
T = 0
0 ; A+ A(m+1)+e A(m+1)
| -m\A 0 A(m+1) A(m+ 1) +n3, |

WE'RE SKIPPING THIS STEP: 3, =

1

(m+1)(mA "+ X(m+1)T,_5)

(Mm+2)+e)Tp_o—A2T,_3

— A(m + 1), where

= ———g 7 *(—e+2x(e+2x — (s)%(s Au)%)’ +(¢)%(¢ +4>\)%(( +2X — (s]%(s A4/\)%)' +e +2/\((£)%(E +4A)% +e+2)) + (s)%(s A4)\)%((E]%(E A4/\)% +e+22)")
2+1(€)2 (e + 4X)2
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Delta Recurrence

Next, we find § € RL‘Z‘) such that T,0 -6 = 0. Note that the nullspace of

T,p is non trivial, since det(T,0) = 0. We let

do =0  (For convenience)

01 = 01
5k:_(2))\\+6)6k—1—5k—2 for2<k<n-1
5, = —Am+2)+¢) Y

ANm+1) "N mt1

The recurrence is given by
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Delta Recurrence

Next, we find § € ]RL‘:(‘) such that T,0 -6 = 0. Note that the nullspace of

T,p is non trivial, since det(T,0) = 0. We let

do =0  (For convenience)

01 = 01
5k:_(2))\\+6)6k—1—5k—2 for2<k<n-1
5, = —Am+2)+¢) Y

ANm+1) "N mt1

The recurrence is given by

_ (VEX e+ —(22+€))k —(—Vaete2— (22 +¢€))*
Ok = 01\ - 2k Xk /4 e+€2
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Overview: Finding S.S. Concentrations & Rates

o Now we use d € NS(T,0), to define all rates

<yi75> 0

= ey — 1

and concentrations
x*=(1,1,...,1)

o1 0 1
x#* = (e%,¢e%, ..., e),
which are proven to be TWO distinct steady states.
TEXAS &,
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Case n =3

Here, we fix n = 3 and allow any integers m > 2.

m -+ 03+ m 0
T, = m m+m+ns m
—mmn3 m2 N2 + N6

Step 1: Find = = (A, (m+ 1)\, )\ €, ¢€,¢)

Welet A\=1and e =.1. Thenn~ = (1,(m+1),1,.1,.1,.1) satisfies the
conditions of the hypothesis.

TEXAS &4 aues
AT AUSTIN = MADISON
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Case n =3

2.1 1 0
T = 1 214 m m+1
-m m+1 m—i—l—l—ng

Step 2: Find 7° = (1,(m+1),1,.1,.1,79)

THE UNIVERSITY OF !‘*
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Case n =3

2.1 1 0
T = 1 214 m m+1
-m m+1 m—i—l—l—ng

Step 2: Find 7° = (1,(m+1),1,.1,.1,79)
We manipulate the determinant of To = 0 to find a closed form for 7

3.1m? — .31m—1.31
2.1m+ 3.41

g =

TEXAS &4 aues
AT AUSTIN = MADISON
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Case n=3
2.1 1 0
Tn0 — 1 214+ m m+1

—m m+4l m4 14 3rosimoLs

Step 3: Find ¢ in the nullspace of T,

Bryan Félix & Zev Woodstock IAn Infinite Family of Networks with Multiple
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Case n =3
2.1 1 0
Tnoz 1 21+ m m+1
3.1m?—.31m—1.31

Step 3: Find 9§ in the nullspace of T,o
Using the first two rows of T, and letting 61 = 1 we get

1

6= —-2.1
2.1m43.41
m—+1

TH'L\II ERSIT
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N
The Reaction Rates

Using d and the formulas in previous slides, we compute our rates:

1.31
_ = _ : _ 1
n=-<= 11 ~ 1.65 r = L3l 1 r3_e71'\"58
em+t —
m—1.31
1 o =21 _
rp = 2= ~ .06 5= =217 ~ 24 s = —iomm .
e m+1 —
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The Reaction Rates

Using d and the formulas in previous slides, we compute our rates:

_ 1.31 1
rlzﬁ ]_65 rng r3:671%.58
emtlt —1
m—1.31
1 =21 _
=331~ 06 s =217~ 24 16 = —inma
e mi1t —1
and concentrations
x* = (1,1,1)
2.1m+3.41
X# = (e7 e72'1’ e m+l
Note that only xf, r» and rg depend on m. —
TEXAS £
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The Determinant of Jacobians

By substitution we obtain the determinant of the Jacobian for the system:

det(df(x*)) = r rnr m—
( rn —+ re )(r1r3 +nry+nrs+ 3+ r4r5)—
r re(n+nmn+rn)
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The Determinant of Jacobians

By substitution we obtain the determinant of the Jacobian for the system:

det(df(x*)) = r rnr m—
( rn —+ re )(r1r3 +nry+nrs+ 3+ r4r5)—

r re (ri+ 3+ ra)

det(df (x*)) = nxo((nxe +r+m)(rn x3)+rnx mr)—
(nxo+ rg)(nxx+r+n)(nxa+ rn x3 +rn)+
(rnx+ re)(rnxinxe)
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Bounding the determinants

Based on these inequalities (we proved, with help from Dr. Dean Baskin),

m—1.31
e m+t  —1
1.31
m+1> rp = T — >m
em+1 — ]_
2.1y+3.41 2.1m+3.41 21
e vl >x3=e ml >e~ Vm2>y

we can bound the determinants of our Jacobians,
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Bounding the determinants

Based on these inequalities (we proved, with help from Dr. Dean Baskin),

m—1.31
e m+t  —1
1.31
m+l>n=———2>m
emil — 1
2.1y+3.41 2.1m+3.41 21
e y+i >X3:e m+1 > e VmZy

we can bound the determinants of our Jacobians,

Proven Bounds

det(df(x*)) > 0.6294m? — 2.156m — 1.61 ¥Ym > 2
det(df (x*)) < —0.41295m? + 4.9437m + 3.06205. ¥Ym > 20
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Bounding the determinants

Theorem

The chemical reaction system Rm,3 has multiple positive non-degenerate

steady states for m > 2.

8
det(df(x))
6
_____ Proven

+ Bound

2
m .

pd

K 1 2 3 /o{
//

‘2 \\ //,/
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Degeneracy Examples

The method outlined by [C & F] Does not always create non-degenerate
steady states! Varying values of e (which still satisfy the hypothesis) can
produce nondegenerate steady states for certain values of m.
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