ZEROS OF THE MODULAR FORM Ay ; = EyE; — Ejyy
POLINA VULAKH

ABSTRACT. We define Ay ; to be the modular form EyE; + Ej4; of weight k+( where Ej, is
the Eisenstein series of weight k£ and study the location of zeros of Ay ; in F, the standard
fundamental domain. We conjecture that all of its zeros are located on the bottom arc of
JF and on the lines x = :I:%.

1. INTRODUCTION

Rankin and Swinnerton-Dyer proved that all zeros of Fj in the fundamental domain F lie
on the arc |z| = 1 [RS]. We study the location of the zeros of the modular form Ay, in F.

Conjecture 1.1. The zeros of Ay in F lie on the boundary B = {z = x + iy € Flo =
+1 or|z] =1}.

Conjecture 1.2. The modular form Ay, has at least [éj — 1 zeros on the line v = %

Theorem 1.3. The modular form Ay has at least [ £] — (14 n) zeros in F that lic on the

line x = % where n 1s the number of zeros of the form % + 1y fory > co\/% forcy < \/ig.

2. BACKGROUND

This material is standard in the theory of modular forms. We use [Z] as reference, while
there are many others that would suffice.

The group action of SLy(R) on H = {z € C|Im(z) > 0} is defined by z — ~v(z) where
for v = { CCL Z } € SLy(R), v(z) = ‘clzz—is. We extend this to HU{oo}UQ such that (o) = 2.
A complex-valued function f is a modular form if it is holomorphic for every point
z € HU {00} UQ and satisfies the transformation law f(v(z)) = f(£55) = (cz 4 d)* f(2)
for all z € HU{oo} UQ, all v € SLy(Z), and some k € Z. Typically, k is positive and even
since the only modular forms of weight 0 are constant functions, the only modular form of

odd weight is the O-function, and there are no modular forms of negative weight.

Two elements 21, zo € HU{oo}UQ are SLy(Z)-equivalent if there exists some v € SLy(7Z)
such that v(z1) = 2.

There exist infinitely many SLy(7Z)-equivalent regions of H, one being the fundamental
domain. This is denoted as F = {z =z +iy € H: z € (—3, 3), |2| > 1}. If we are concerned
with locating the zeros of a modular form, it suffices to locate unique zeros up to SLs(Z)
equivalence. Thus we look for zeros in F. Note that the lines # = —3 and o = § are SLy(Z)-
equivalent, as are the two sides of the arc |2| =1, x € [-%,0] and |2| = 1, x € [0, —1%] so it

23 2
suffices to consider only one of each.
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The valence formula
1 k

2.1 Su()+ S+ el =

tells us that a modular form f of weight k has pre(:lsely < Zeros.

The Eisenstein series of weight k for z € HU {oo}, k > 4 is defined by

(2.2) Eu(2) —% 3 (;k

ol +4d)

c,deZ

oo
. : . : : 2k 2minz
with a corresponding normalized Fourier expansion, Ey(z) = 1 — By E, or—1(n)e*™* where

B, denotes the kth Bernoulli number.

3. PROOF OF THEOREM 1.3

For k,l > 4, we focus on the modular form of weight k + [, Ej(z )El( ) — Epn(z),
and its zeros. Note that this is a cusp form for all k,] and that E( +1iy) € R, so
Ew(3 +w)Ei( +iy) — Epn(s +iy) € R as wel. When k =1 =4, EyE — Epyy = 0
since £ = Fg. Thus for the k = [ case, we focus on k > 6.

We want to approximate Ej,(3+iy)? — Ea (5 +4y) and use the resulting function to exhibit
|£] sign changes, showing that EZ — Eoy, has | £] — 1 zeros on the line = 1. Unfortunately,

our method only works up to y < CO% for ¢y < \/Lg, so we define n to be the number of
zeros of the form z = % + iy with y > CO% of E? — Fo,. Working with y in our range, we
instead prove | %] — (1 +n) zeros.

The points we will use are of the form z = % + iy, where y,, = tan(e’" for 6,, = =%

2
where m € Z such that [%1 <m < % —n. If we rewrite B, = M, + Ry, then E,f -
Eoy = ME — Moy, + 2M Ry, + R? — Ry Then we wish to show [My(3 + iym) — Moy(3 +
Wm)| > [2Mi(3 + iym)Rk( + iym) + Ry(5 + zym) — Roi(3 + zym)| In order to do this, we
need to bound \2Mk( + zym)Rk( + zym) + Rk( + 1Y) ng( + iy )| from above and
| M, (5 + iym) — Moy (5 + iy )| from below, the first of which requires bounding |Ry| on its
own.

Lemma 3.1. For all 3 < y < coﬁ for cg < \/ig, the absolute value of the remainder

term |Ri(5 + iy)| is less than é”ﬁ

G+

Proof. Write Ey,(3 + iy) = My(5 + iy) + Ri(5 + iy) where

+ P
T Gk

-~

c2+4d2=1,2 except for (c¢,d) where c=1,d=1 and c=—1,d=—1

(3.1) My(5 +iy) =
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and
1 1 1
(3-2) R(z+w)= 5 T3 :
2 (3 + iy)k 2(cvd):§+d225(c(% + iy) + d)*
e=1,d=1 and c=—1,d=—1 det
L= —1 1 1
Then |Rk(2 + Zy)‘ (%+y2)% + 262§>5 (C(%+iy)+d)k .
(c,d)=1
c,d€Z
Rewrite
(3.3)
1 1 ’ 1 1 1 1 1
L e g >
1 & % E . E
2otms et )+ Az () (B )2 2L (5 + A2+ )
Gz 2 s D
Tk(g;iy)

and observe that (¢, d) and (—c, —d) yield identical terms. Then we sum over positive ¢ only,
climinating the coefficient of 3. Similarly, for fixed ¢, the terms for (c¢,d) and (¢, —(d + ¢))
yield idential terms as well. This lets us sum over positive d for each ¢, accounting for the

lack of symmetry when ¢ =1 and ¢ = 2. For simplicity, we drop the coprime condition on ¢
and d.

Then

[e.9]

1 > 1 1
(3'4) Tk<_ + iy) = z T E
2 ; ; (5 +d)* + c*y?)> 2

c2+4+d2>10

and we proceed by finding an upper bound for each fixed c¢. Due to the isolated terms not
included in Tk(% +1iy), c =1 and ¢ = 2 must be bounded separately.
For ¢ =1 we have

J/

(3.5)
> 1 . 1 __ 1 ] +2§ 1 ]
a1 (G+d?+y)z (3-d?+y)2 G+y)2 S((G+d?+y?)2
1+d2>10
1 1 o0 1
3.6 < = +2 =+ e
0 (2 +v2)2 (((%+3)2+y2)5 /3 (3+2)2+y%)2 )
1 1 y+3 1 o0 1
3.7 < - +2 =+ —dr + —_—dv
o (5 +v%)2 (((%+3)2+y2)f /3 (5 +2)?+y%)2 /y+% (5 +2)* +y°)2 )
1 1 yt3 1 o0 1
3.8 w2 -+ ——dz + —dz
o ) (3 +y1)2 (((é+3)2+y2>5 /3 (3+3)2+y2)2 /y+% (3 +2))2 )
T+a<y 3+a>y
1 242y 2
(3.9) < (% +y2)§ (% +y2)§ (k—1)(y + 1)k—1
Similarly,
(3.10)
- 1 1 1 1 - 1
Z Pt E s r 2 k
= (L+d)?+4y?)z (1—d)+4y?)2 (A+4y?)2 (9+4y?): S ((L+d)* +4y°)2

4+d2>10 ~
- d=-3 d=—4
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where
oo 1 fo'e)
(3.11) 2 . gz( — + da:)
a=3((1+d)? +4y?)2 ((1+3)2+4y )2 I3 (A 4a)? +4y2)2
1 Zy-1 1 oo 1
(3.12) =2(———p +/ —kdz+/ ——da)
(16 +4y?)2 /3 (1 +2)2+4y?)2 2v-1 ((1+ )2 +4y?)2
1 2y—1 oo 1
(3.13) <2 —— +/ . dz-i—/ ———da)
(16 +4y2)2 /3 (4y?)2 -1 ((1+2)2)2
z+1<2y z+1>2y
(3.14) < 2 3

(16 +442)5  (2y)k!

: 1 1 2 3 _
which totals to Y + o + Torig)} + T for ¢ = 2.

For general ¢ > 3,

(3.15)

> 1 1 > 1 1 oo 1

> - T E Z ES4< . 1_a E+/,c - de)

az1 (5+d)2+cy?)z ((5-d?+c2y?)2 oo (5 +d)? +c?y?)2 (5§ +73%)2 +c2y?)2 70 ((§+2)2 +c2y?)2
c24d2>10
if ¢ is odd, and

1 oe 1
(3.16) 22 - <4( . +/ - dz)
a=1((5 + d)2 +e2y?)s (§+1-5)2+c%y2)2  J1-5 ((§+2)2 +c2y?)2

if ¢ is even. We bound odd ¢ by even ¢ to get

(3.17) 22 <4( _ ! k+/: T )1 ﬁd‘”)
p} 7T 2

+d2+02 2)2 ((%+1_C)2+02 2)2 2 4 ¢2y2)
o 1
(3.18) ( / . d:c)
Lraynt oo (G+a)2 eyt
cyfl e’}
(3.19) 4( (/ ’ ! - der/ ! do)
ite 2)2 0 (GHe2+ey)? vz (3 +2)? +cy?)2
cyfl 1 e’} 1
(3.20) < 4( (/ ’ ﬁder/ 7“11)
it 2)2 0 (c?y?)2 =3 (3 +2)?)2
I+%§Cy ac+§>cy
4 4 1
(3.21) T+ —)
(24225 k=17 (cy)k—1

Summing over all fixed ¢ > 3 gives us

(3.22)
> 4 n 4 n 4 ) < 4 . 4 N 4 +/°°( 1 n 1 n 1 d”)
e A R e Gt 1 L S € e L e N I GV [ 20

4 4+ 45 8+ 25 - 4 11
(%Jrgyz)% By)k=1 (k= 2)3k—2yk-1 (%Jrgyz)% (3y)k—1

(3.23) <

which, combined with our upper bounds for ¢ = 1,¢ = 2 gives us

(3.24)
1 1 2+ 2y 2 1 1
Ti(z +1y) < + + + T
2 Grf (@i F-Du U (apapi 9+ ap)t
9 3 4 11

+ + +
(16 +4y2)2  u)* ' (L pgy2)s Byt
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and
(3.25)
1 1 1 1 1 242
’Rk(%+iy)’<9 25+ QE_‘_ 2E+25 2E+5 2E+49+35
(v +42)r (2 (F+y%)2 G+y?): (4972

2 1 1 2
+ + + +
(F=D(y+ 1D (444922 (9442)2 (16 + 4y2)2
L3 ¢
y)Et (L 4ay2)s Byt
2y+2
U S (UN R a2 L6y 33y
(2 +y2):  y2): (2442 (RP+2y+ 1) (4y2)7 (9y2)2
1ty y Ty v +2y+1)z (%) (997)
(3.29) T g2 941y
' 94 2)5 (24 2)5 94 42)%
Gty (T+v?): (7+99)

(3.26)

(3.27)

(3.28)

9+12y
+ )7

Thus for any z € H of the form § + iy, |Ri(3 + iy)| <

Lemma 3.2. For all X <y< 0\/7 for cg < \1[ the absolute value of the main term

12My(5 + iy)Ri(3 + @'y) Ri(3 +iy)* — Row(3 + iy)| is strictly less than 8(%).
+y?

Proof Recall that M (3 +dy) = 1+ a L n + - - vt so |[My(3 +iy)] < 1+ | o
+iy o+

k\ <3 and |Ry(5 +1iy)| < LQ)yk which is decreasmg in k. Then
+y?

ot

)

(3 +iy) Ri(5 +iy) + Ri(5 +iy)® — Rox(3 +iy)| < 2[Mi(5 + )| Ru(5 + )| + |Re(5 +ay)
1) + [Ro(5 + iy)]

) < 6|Ry(5 +iy)| + 2| Ri(5 + iy)|

) = 8| Ri(5 + i)

which implies 2Mk(%—|—z'y)Rk(%+iy)+Rk(%—l—z’y)Q—Rzk(%—i—iy) < 8|Rk( +iy)| < 8<M>

Q+y2)3
by Lemma 3.1. U
Lemma 3.3. For all \/75 <y = tar1(2(9m) < cO\/% for ¢y < \/Lg with 6, = %% where m € Z
such that [% 1 < m < E—n, the absolute value of the main term| My (3 +iym)? — Moy (3 +iym )

( +ym)2 -2

(4+ym)

18 at least



6 POLINA VULAKH

Proof. If we rewrite 3 + iy, = re'’, then

(3.34)
M. i@mQ_M i9m2_1 1 1 2_1 1 1
k(re ) Zk(re ) - ( + (rewm)k + (rei(ﬂ.,gm))k) ( + (Teiem)% + (Tei(ﬂfém))%)
(3.35) __2 4, 2
: T (rem)k " (relOm))k " (reitm )k (rei(r—0m))k
ok i(mr—0)k 10k 9
(3.36) _ e e+
(rezak)(rkemkefzek)
Ok (pimk p—ibk | Si0k) | o
(3.37) == < 2: 'ek+'§k M
12k (eitke—itk)
4k cos(0k) + 2
(3.38) - e
and for our points, cos(6,,k) = cos("k) = cos(mm) = (—=1)" so
) ) Ark(—1)™ 4+ 2
(3.39) | Mie(5 + iym)* — Mor(5 + iym)?| = %
4ok — 2
(3.40) T
(3.41)

Converting back from polar coordinates gives us r* = (;11 + ygl)g SO
45 +ya) -2

1 . 2 1 . 2
(3.42) \Mk(§ + iYm)” — Mzk(§ + iym)"| 2 (% + g2k

O

1 k
4 +ym)2 -2

Lemma 3.4. For ally,, as defined previously, —5 18 strictly greater than 8 <%Hﬂ> .

1Hum)" (Z+y3n)%
Proof. We simplify the desired inequality:
(3.43)
AL 4 42) =2 724 96y, 1 1 18+24ym:><§+y§1)§>19+24
1 k E & & 1 Ym
Grom™ G4ed)r  Grud)r 2+ud): (G+ed): it
Notice that for all y,, in our range, (\3/—8g + 24)y,, > 19 + 24y, so we let ¢y = \3/—% + 24 to get
9,2k
2T Un\ 2
4 m
(3.44) (%1 - yg) > Cotm
This simplifies further to
k 2+ k 2
3.45 S log (+——5') > log(caym) = 5 log (1 ) > log(caym
(3.45) ploe iy 0g(c2ym) = 5 log (1+ T og(caym)
and for all y,, in our range, it is the case that log(1 + 1 2 ~) > 1 1 -
4+ym 4+ym

This gives us
(3.46) k> 2(3 + y2,) log(caym)
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Since 1y, < CO\/%,
(3.47) 2(% +y2) log(caym) < 2(2 + ¢ logk) log(cgcololg“k)
so we need
(3.48) k> 2(3 + fkp) log(caco ks )
Notice that CO% and let £ > cy. This gives us
(3.49) k> 2(5 + ) log(k?) = 4(§ + chag) log(k)
which brings us to two cases.
2
Case 1: If}l > %, we have ( +@) < % and so
(3.50) k> 4(3)log(k)
(3.51) k > 2log(k)
which is true for all k.
Case 2: If}L CO , then (}1 + lc‘ﬂgkk> < IQOCOk and so
(3.52) k> 4(f§gk) log(k) = 8¢k,

which is true for all £ with ¢g < —=
Thus in both cases, the inequality holds for all k£, letting us conclude that for all ¥, in our

k
4 _
range, (41+y—m) is strictly greater than 8<M) B
(3 +vi)" (3+v7.)2

Recall that we set k > ¢s, so the following holds for k£ > 46 = [cy|. Combining our results
from Lemmas 3.2, 3.3, and 3.4, we conclude that [Mj (2 + iym)? — Moy (3 + iym)| is strictly
greater than ]2Mk(% + iym)Rk(% + iYm) + Rk(% + iym)? — ng(% + 1Y )|. This allows us to
use Mk(% + iYm) — M2k<% + iy,,) as an approximation for Akk(% + 1Y)

From (3.38) we know Mk( +iYm)? Mgk( + 1Y) = My (rem)2 — Moy (retm) = %.
Since [£] < m < £ —n and there are % — n integers in H%} kE_ n], we have shown that
My (5 + iym)? MQk;( + iym) exhibits £ — n sign changes, and thus has £ — (1 + n) zeros.
Since this function adequately approximates Ay, it follows that Ay, has % — (14 n) zeros

on the line z = % This concludes our proof.

4. FUTURE WORK: THE GENERAL CASE FOR Ay

With time, we hope to obtain similar results for the general case of Ay; - when k # [.
Observe that Ay ; = Ay so let us work with £ > [. If we write A ; by using our Ej, = M+ R,
substitution, we have AM = MiM; + Ry M; + R/ My + Ri.R; — My, — Ry, with a proposed
main term
(4.1)

M) = M) = (Z-25550) (a0t _ (el sttt

r2k cos(0k) + r? 2 cos(01) + r*H12 cos(O(k — 1))
20k +)

(4.2) -
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Since k > [, we suspect that the second term r**12 cos(6l) will contribute most to the value

of the function. Thus we choose points re?= for 6, = mE for L <m< %, analogous to

3
our points in the case of Ay . If we rewrite k = [ + d, our main term becomes

73492 cos(0,, (1 4 d)) + r37242 cos(0,,1) + r2+42 cos(6,,d)
FAl+2d)
r#+d2 cos(ml) cos(™Ed) + 31292 cos(ml) 4 r?+92 cos(BEd)
FATr2d)
P39 (—1)m cos("d) + p3IF249(—1)m 4 p2+d9 cos(ZEd)
Alt+2d
We would like to show that |r#+242(—1)™| > |r3742(—1)™ cos(™Ed) + r2+92 cos(Z2d)| by
having separate cases for d = 0,2,4 (mod 6). This is a result of cos("/*d) taking on different

values depending on what d is (mod 6). In these three cases, we also want to find a lower
bound on | M (3 + iym) Mi(3 + iym) — Mii(3 + iym)|-

(4.3)

We believe | Ry M+ Ry M+ Ry Ry — Ri1| < 8|M;| < 8<M>. By following the method

9 7
(FHv3)2
of proof for Ay, we hope to prove that Ay, has [L] — (1 + n) zeros on the line z = 1, a
modified version of Conjecture 1.2. Here, n is the number of zeros of the form x + iy for

y > cg% for ¢y < \/ig.
This conjecture came from plotting the zeros of Ay ; in Mathematica and observing several

patterns. Let Bj; be the number of zeros of the form %—I—iy € F that Ag;. Then we compile
a chart of By for 10 < k,1 < 100, displayed below.

Nk 10 12 14 16 18 20 22 24 26 28 30 32 34 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100
10 0o 1 0o 1 0 1 1 0 1 1 0 é 1 1 11 1 11 1 1 1 11 1 11 1 1 1 1 11 1 11 11 1 1 1 1 1 1
12 0 0 A 1 1 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1 T 1 1 1 1 1 1 1 1 1 1 11 1 1 1 1 1 1
14 1 0 1i ¢+ 1 1 1 4 1 3 1 414 ¢ 1 1 1 1t 1 2 4 1 1 1 1 4 4 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
16 0 1 1 ™% 1 2 12 1 T2 1 2 2 1 2 2 Tz 2 1 2 2 1 @ 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
18 1 1 1 1 1 A 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 22222222 2 2222221222 2
20 1 1 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
22 1 1 1 1 2 2 2 3 2 2 3 A 2 3 2 2 3 2 3 3 2 3 3 2z 3 3 2 3 3 2 3 3 2@ 3 3 3 3 3 3 3 3 3 3 3
24 1 1 1 1 2 2 2 2 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
26 1 1 1 2 2 2 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
26 1 1 1 1 2 2 2 3 3 3 4 3 3 4 3 4 3 3 4 3 3 4 3 4 4 3 4 4 3 4 4 3 4 4 3 4 4 3 4 4 3 4 4 3
30 11 1 1 2 2 2 3 3 3 3 4 4 3 A 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
32 1 1 1 2 2 2 3 2 3 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
34 1 1 1 1 2 2 2 3 3 3 4 4 4 5 4 4 5 4 5 4 4 5 4 4 5 4 4 5 4 5 5 4 5 5 4 5 5 4 5 5 4 5 5 4
36 1 1 1 2 2 2 2 3 3 3 4 4 4 4 5 5 4 A 5 555 555 5555 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
3 1 1 1 2 2 2 3 3 3 4 3 4 5 4 5 5 5 5 5 5 5 5 &5 5 5 5 5 5 5 5 5 &5 5 5 5 5 5 5 5 5 5 5 5 5 5
40 1 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 5 5 6 5 5 6 5 6 5 5 6 5 5 6 5 5 6 5 6 6 5 6 6 5 6 6 5
42 1 1 1 2 2 2 2 3 3 3 4 4 4 5 5 5 5 6 6 5 6 6 5 é 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
44 1 1 1 2 2 2 3 3 3 4 4 4 5 4 5 6 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 66 6 6 6 6 6 6 6 6 6 6 6
46 1 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 e 6 7 6 6 7 6 7 6 6 7 6 6 7 6 6 7 6 6 7 6 7 7 6
48 1 1 1 2 2 2 3 3 3 3 4 4 4 5 5 5 6 6 \N 7.7 6 7 7 6 A 7 7 7 7 7 7 7 7 7 r v 1 7 7 7 7 7 7
50 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 5 6 7 6 v 7 7 7 7 7 7 7 7 v r i i v i v v i i1 717 7

Each entry corresponds to By for Ay; where the diagonal line connects By, ;. We observe
that for fixed [, By, stabilizes to [él — 1. The circles correspond to when By stabilizes
for =4 (mod 6), while the triangles correspond to when By stabilizes for [ = 0 (mod 6).
This leads us to several patterns that result in conjectures expanding on Conjecture 1.2:

Conjecture 4.1. For fized 1 =4 (mod 6), Ay has [L]—1 zeros on the line x = L if k > k.
Evidence suggests that ko <1+ 18([L]).

Conjecture 4.2. For fized | = 0 (mod 6), Ay, has £ — 1 zeros on the line v = 1 if
k> 1+446(% (mod3)) or k—1 = 0,4 (mod 6). Otherwise, Ay, has £ — 2 zeros
1

on the line x = 3
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Conjecture 4.3. For fized | =2 (mod 6), Ay, has |L] — 1 zeros on the line x = L for all
kE>1.

We hope to prove a weaker version of Conjecture 1.2, one that is analogous to Theorem
1.3 for general k, [

Conjecture 4.4. The modular form Ag; has at least |L| — (14 n) zeros in F that lie on
the line x = % where n is the number of zeros of the form % + 1y with y > CO\/T\{ilgl'

Lastly, we would like to find an exact value for n. So far, we suspect n ~ %. This will
give an exact number for how many zeros we can prove the location of, both in the case of

Ak,k and Ak,l-
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