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Zeros of Modular Forms

@ A complex-valued function f is a modular form if:

Q forall ze HU {o0}, v = [i (bj] € SLy(Z)

we have f(y(z)) = f( gig) = (cz+ d)¥f(z). Then k is called the
weight of f. ( Transformation Law)
@ f is holomorphic (complex differentiable) for every point z € HU {0},

so f can be expanded in a power series in z around any point zy € H

We look at modular forms of positive, even weight.

@ The valence formula tells us how many zeros f has.

% - %V,-(f) + %vp(f) + Z vz(f)

zF#i,p
zeH
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Zeros of the Eisenstein Series in F

Eisenstein series of weight k:

1 1 2k & .
D=3 2 (arap =t g
2(C7d):1 (cz + d) Bk

c,d€Z
It has been proven that the zeros of the Eisenstein series Iie on the arc of
the fundamental domain F = {z =x+iy € H:x € (-3, 1),|z| > 1}
(RSD, 1970).

292

Figure: Figure:Zeros of Erg

Sarah Reitzes and Polina Vulakh (Tufts Unive Eisenstein Series July 23, 2015



Zeros of ExEj — Ey

Conjecture:

The zeros of ExE; — Ex1;, a modular form of weight k + /, lie on the
boundary of F.

Figure: Zeros of EE%O — E100 Figure: Zeros of EgoEg — Egg

Conjecture:

The zeros of E,g — E»k, a modular form of weight 2k, lie on the lines
X = :I:% in F.
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Proving the zeros of EZ — Ey

Since Ek(% + iy) is real-valued, we prove the desired number of zeros
(L%J — (1+ n)) via IVT using points of the form 3 + iy, where
ym:%foer:%wheremGZsuch that [%] §m<§—n..
Why —n?

We run into problems for y >
past this range.

However, there exists a method involving the Fourier expansion that
proves the location of zeros for which y > civ/klog k, so we lose very few
zeros altogether.

avk
\/7 1

so n is the number of zeros with y
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Approximating EZ — Ey

Write Ex(3 + iy) = My(3 + iy) + Ri(3 + iy) where My corresponds to
c? 4+ d? <1 - except for (c,d) = (1,1) - and Ry corresponds to all other
(c,d).

Then

B3 +1y) — Bak(3 +iy) = (M(3 + iy) + Rel(5 + )

— (Mak(5 +iy) + Rok(3 + i)

= My (3 + iy)? + 2Mi (3 + iy)Re(L + iy)

+ Ri(5 + iy)* — Mai(3 + iy) — Ra(3 + iy)
We know |Ry(3 + iy)| < %, which is decreasing in k, and since
41ty7)?
M3 +iy) =1+ 11—+ L

Kz + ) Gy (L)

we want to show

—, we know |M(3 + iy)| < 3. Then

9 k

IMi(E + iym)? = Mo} + ivm)| > 8( 572222 )
(z+y3)2
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Approximating EZ — Ey (cont.)

For our points % + iym, we have a lower bound

AL 4 y2)s —2
|Mi (3 + ivm)? — Mog(3 + iym)| > —(41 ym)2 p
(Z +Ym)

so we want to show

k
45 +y2)2 —2 - 8((9+12ym )

(G + ) R

For large y, this is not true: specifically for y > co\/% where ¢y < %,
; vk
so we work with y,, < 0 Jiog k"
9, .2\ &
By simplifying further, we have (‘1‘+y';) DS CoYm Where ¢ = % + 24.
Z"".ym

This is true for k > ¢, so we have proved

M3+ ivm)? = Mok(} + iym)| > 855220,
(7+v3)2
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Sign changes from My(3 + iym)? — Mok(3 + iym)

If we rewrite % + iym = ref®m e have

, , 4ri(—1)m 42

M i0m\2 — M iOm — -
k(re"™m)” — My (re"™r) 2k

For 0m = T where m € Z such that (%] <m< % — n, this yields

L%J — n sign changes corresponding to ng — n—1 zeros by IVT.

Sarah Reitzes and Polina Vulakh (Tufts Unive Eisenstein Series July 23, 2015 8/1



1
5

HHHNNNNO®OTETON0OWONNN

% is at least that

HHHNNNMM®mN S T00W00 0NN

HHHHNNNOMO T T TINN 00 00N

HH AN NNMO 0T T T TN 0000

HHHNNNNOMOOEE 00N 0N 000

HHHHNNNMMOOE T 00 W0 N0

HHH NN MMM T O 0NN WG

HHHNNNNMMOO T 0 E DD 000

34 36 38 40 42 44 46 48 50

OHHHNNNMMM T T W TN T FDF F

32

AN NN MmN E o E T T T T T FE

M H NN N Moo ® O w0 T T EE

OCHHHNNNM®M®®T®OTmmTmm

HH NN NN N mmmnmmmonmnmon

)
2
o
(%]
‘o
2
7]
c
)
a
(1T]

24 26 28 30

HHHH NN NN OO NDO0nmnnnnonon

OCHHHNNNNMMN®MNN®NNOM® M

HHHANCNNNNNNNNNNN AR

NN SN

14 16 18 20 22
0
1
1
1
2
1
2
2
2
2
2
2
2
2
2
2

10 12
(L]
0 1
10
0 1
0 1
101
0 1
11
101
0 1
101
101
0 1
101
101
101
1 1
101
11
11
11

Kl
10
2
14
16
8
0
2
4
6
8
0
2
34
36
38
40

Recall that By ; =number of zeros of ExE; — Ej for which x
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Example: EkE34 — Ek+34

Figure: k=34 Figure: k=40

Figure: k=44 Figure: k=50
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Extending this to general ExE; — Ey,; (cont.)

Our main term becomes

i0 i0 i0y _ r?tk2 cos(0k)4-r2k 12 cos(01)+rkt2 cos(8(k—1))
My (re”)M(re”) — My (re'”) = )

If we rewrite k = / 4 d and let 0, = T for (é] <m< é

r3Hd2(—1)™ cos( I d) + r31H292(—1)™ + 292 cos( I d)
F4l+2d

as our main term instead.

By splitting this up into three cases for d = 0,2,4 (mod 6), we follow a

similar method to show that ExE; — Ex4; has at least Léj — n—1 zeros or

which x = %
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