Analyzing Methods to Determine Pairwise Correlations Between Neurons

Luna Bozeman

Clemson University

July 19, 2016

Okun et al. Experiment

- Neurons fire signals, known as *spikes*, in order to communicate with each other through an electrochemical process.
- Each neuron has a corresponding spike train, which is a sequence of spikes over time.
- In an attempt to explain relationships between neurons based on spike trains, Okun *et al.* discussed these complex individual neural activities and how they could be coordinated [3].
- Found that neighboring neurons were correlated based on the firings of the overall population and found that this provided a compact summary of the population activity.

RMM with Coupling Terms: The Parameters

3 parameters extracted to determine pairwise correlations:

- 1 Row sums s: number of spikes of a neuron
- **2** Column sums **c**: number of all spikes at time = i
- **3** Inner product of each row and **c**, **d**: stPR

Example

Neurons	Raster Plot									d
1	0	1	0	1	0	0	1	1	4	4
2	1	0	1	0	1	1	0	0	4	8
3	1	0	1	0	1	1	0	0	4	8
С	2	1	2	1	2	2	1	1		

• $M(s, c, d) = \{ \text{set of matrices with prescribed } (s, c, d) \}$

RMM with Coupling Terms: Ryser and Spike Exchange

- First they generated a matrix satisfying **s** and **c** using Ryser's algorithm [1].
- Then the matrix was put in canonical form and a random spike exchange across neurons [2] was performed.

Figure: A representation of spike exchange across neurons [2]

Example cont'd

Here is a possible matrix that we may obtain from this process:

Neurons		N	s*	d*						
1	1	1	1	1	0	0	0	0	4	8
2	0	0	0	0	1	1	1	1	4	4
3	1	1	1	1	0	0	0	0	4	8
C *	2	2	2	2	1	1	1	1		

RMM with Coupling Terms: d Constraint

Example cont'd

_	Neurons		N	ew	\mathbf{s}^*	\mathbf{d}^*	d					
	1	1	1	1	1	0	0	0	0	4	8	4
	2	0	0	0	0	1	1	1	1	4	4	8
	3	1	1	1	1	0	0	0	0	4	8	8
-	C *	2	2	2	2	1	1	1	1			

Exchange the 0's and the 1's in the boxed sub-matrix above:

Neurons		N	ew	s*	d*	d					
1	1	1	1	0	1	0	0	0	4	7	4
2	0	0	0	1	0	1	1	1	4	5	8
3	1	1	1	1	0	0	0	0	4	8	8
C *	2	2	2	2	1	1	1	1			

Finally, the correlation between each pair of neurons from this new random matrix was computed using the Pearson correlation.

Definition

The *Pearson correlation* is a measure of strength of the linear relationship between two variables x and y.

$$r = \frac{\sum_{n=1}^{m} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{n=1}^{m} (x_i - \bar{x})^2} \sqrt{\sum_{n=1}^{m} (y_i - \bar{y})^2}}$$
(1)

- -1 implies negative correlation
- 0 implies no correlation
- 1 implies positive correlation

Sampling Method: A Visualization

- Cube *M*(*s*, *c*)
- Square $M(s, c, d \pm n)$
- Curve *M*(*s*, *c*, *d*)

Goals

Main Question

Will we be able to to obtain more accurate and consistent results if we do not allow for the $\pm n$ error on **d**?

- Determine if the ±n error allowed on d made a difference in our correlation results or not.
- Create code that would perform the raster marginals model with coupling terms but without the error on d.
- Create a program that would generate multiple sample matrices, both with and without the ±n on d and output their corresponding correlations.

Modified Code & New Program

- Inputs: raster file, number of columns, number of sample matrices from Dr. Okun's original code, and number of sample matrices from our modified code.
- **2** Generate a new raster file of a specified size.
- 3 Extract the three parameters and run Dr. Okun's code and our modified version of his code the specified number of times.
- 4 Calculate the correlation coefficient matrix.
- **5** Calculate the estimated standard deviations for both sample correlation values and compute the difference.
- 6 Plot the correlations.

Explanation of Graphs

- Each run of the program produces n graphs, where each graph represents the correlation between neuron i and all other neurons.
- The *x*-axis represents the neurons and the *y*-axis represents the correlation.
- Here we use 100 samples each from Dr. Okun's code and our modified code.
 - Red dots Dr. Okun's code
 - Blue dots Modified code
 - Green dots new raster file

10×30 Raster Example

10×300 Raster Example

10×3000 Raster Example

10×10000 Raster Example

10×170000 Raster Example

A Closer Look

Correlation between Neuron 7 and Other Neurons

What Does This Mean?

- As the number of columns increases, the tolerance on d matters less.
- As the number of columns increases, the more similar the standard deviations of both samples become.
- Losing the original permutation of c seems to have an effect on correlations.
- Important to note: these results and claims can only be applied to similar rasters.

Future Directions

- Test our claims and results on various rasters that we did not have access to.
- Determine if the provided three parameters are actually enough to determine pairwise correlations between pairs of neurons.
- Find bounds on the solution spaces for matrices with prescribed row sum, column sum, and inner product constraints.

Thank you

I would like to first and foremost thank our mentor, Dr. Anne Shiu. This research experience would not have been possible if not for her mentorship and guidance. I would also like to thank Kaitlyn Phillipson, Ola Sobieska, and Robert Williams for their assistance on this project, as well as my partner Adriana Morales. Finally, I would like to thank Dr. Michael Okun for generously answering our questions and providing data for this research.

References

- Richard A. Brualdi. Algorithms for constructing (0, 1)-matrices with prescribed row and column sum vectors. *Discrete Mathematics*, 306(23):3054-3062, 2006.
- [2] Sonja Grün. Data-Driver Significance Estimation for Precise Spike Correlation. *J Neurophysiol*, 101(3):1126-1140, 2009.
- [3] Michael Okun, Nicholas A. Steinmetz, Lee Cossell, M. Florencia lacaruso, Ho Ko, Pter Barth, Tirin Moore, Sonja B. Hofer, Thomas D. Mrsic-Flogel, Matteo Carandini, and Kenneth D. Harris. Diverse coupling of neurons to populations in sensory cotex. *Nature*, 521(7553):511-515, 2015.