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What is a Modular Form?

Let

SL2(Z) :=

{(
a b
c d

)
: a, b, c , d ∈ Z & ad − bc = 1

}
.

For z ∈ H and g =

(
a b
c d

)
∈ SL2(Z) let gz = az+b

cz+d . If

f : H→ C is holomorphic, satisfies

(cz + d)κf (gz) = f (z)

and is holomorphic at infinity, then f is a modular form of weight
κ.



Level of a Modular Form

Let

Γ0(q) :=

{(
a b
c d

)
∈ SL2(Z) : c ≡ 0 (mod q)

}
.

For z ∈ H and g =

(
a b
c d

)
∈ Γ0(q) let gz = az+b

cz+d . If f : H→ C

is holomorphic, satisfies

(cz + d)κf (gz) = f (z)

and is holomorphic at infinity, then f is a modular form of weight κ
and level q.



Modular Forms as a vector space

Modular Forms of fixed weight and level form a finite
dimensional vector space over C.

Let f be a modular of weight κ and level q, f has a fourier
series at infinity:

f (z) =
∞∑
n=1

λf (n)n
κ−1

2 e2πinz .

In the space of modular forms of fixed weight and level, there
is a subspace called the space of newforms, we will call this
space H∗κ(q)

Newforms tend to have nicer analytic properties, in particular
we can define an L-function associated to Newforms in a nice
way



Modular Forms as a vector space

Modular Forms of fixed weight and level form a finite
dimensional vector space over C.
Let f be a modular of weight κ and level q, f has a fourier
series at infinity:

f (z) =
∞∑
n=1

λf (n)n
κ−1

2 e2πinz .

In the space of modular forms of fixed weight and level, there
is a subspace called the space of newforms, we will call this
space H∗κ(q)

Newforms tend to have nicer analytic properties, in particular
we can define an L-function associated to Newforms in a nice
way



Modular Forms as a vector space

Modular Forms of fixed weight and level form a finite
dimensional vector space over C.
Let f be a modular of weight κ and level q, f has a fourier
series at infinity:

f (z) =
∞∑
n=1

λf (n)n
κ−1

2 e2πinz .

In the space of modular forms of fixed weight and level, there
is a subspace called the space of newforms, we will call this
space H∗κ(q)

Newforms tend to have nicer analytic properties, in particular
we can define an L-function associated to Newforms in a nice
way



Modular Forms as a vector space

Modular Forms of fixed weight and level form a finite
dimensional vector space over C.
Let f be a modular of weight κ and level q, f has a fourier
series at infinity:

f (z) =
∞∑
n=1

λf (n)n
κ−1

2 e2πinz .

In the space of modular forms of fixed weight and level, there
is a subspace called the space of newforms, we will call this
space H∗κ(q)

Newforms tend to have nicer analytic properties, in particular
we can define an L-function associated to Newforms in a nice
way



Modular Forms as a vector space

Modular Forms of fixed weight and level form a finite
dimensional vector space over C.
Let f be a modular of weight κ and level q, f has a fourier
series at infinity:

f (z) =
∞∑
n=1

λf (n)n
κ−1

2 e2πinz .

In the space of modular forms of fixed weight and level, there
is a subspace called the space of newforms, we will call this
space H∗κ(q)

Newforms tend to have nicer analytic properties, in particular
we can define an L-function associated to Newforms in a nice
way



Trace Formula

Theorem (Petersson Formula)

Let B be an orthogonal basis for Sκ(q), and define

∆N(m, n) = cκ
∑
f ∈B

λf (m)λf (n)
〈f ,f 〉 then

∆N(m, n) = δ(m = n) + 2πi−κ
∑
c>0

c≡0(q)

S(m, n; c)

c
Jκ−1

(
4π
√
mn

c

)
,

where 〈·, ·〉 denotes the Petersson inner product, S(x , y ; c) denotes
the Kloosterman sum, and Jκ−1(x) denotes the J-Bessel function

of order k − 1, and cκ = Γ(k−1)
(4π)k−1 .

Unfortunately, newforms do not generally form a basis for the
space of modular forms of fixed weight and level
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Newform Trace Formula

Theorem (Newform Petersson Formula, Petrow and Young)

With ∆∗q (m, n) := ck
∑

f∈H∗κ(q)

λf (m)λf (n)

〈f ,f 〉 as before denote the RHS of the Petersson formula, then for

squarefree q and even integer κ,

∆∗q (m, n) =
∑

LM=q

µ(L)

ν(L)

∑
`|L∞

`

ν(`)2

∑
d1,d2|`

c`(d1)c`(d2)

∑
u|(m,L)v|(n,L)

uv

(u, v)

µ( uv
(u,v)2 )

ν( uv
(u,v)2 )

∑
a|( m

u
, uv

(u,v)
)

b|( m
u
, uv

(u,v)
)

∑
e1|(d1,

m
a2(u,v)

)

e2|(d2,
n

b2(u,v)
)

∆M (m, n)

where c`(d) is jointly multiplicative and cpn (pj ) = cj,n with cj,n such that

xn =
n∑

j=0

cj,nUj

(
x

2

)
,

where Un(x) denotes the nth Chebyshev Polynomial of the second kind.



Approximate Newform Trace Formula

Lemma (Approximate Version of the Newform Trace Formula)

Let m =
∏
p
pmi and n =

∏
p
pmi ,

∆∗q(m, n) = Aq(n,m) + Oκ,ε(q
−1+ε(mn)

1
4

+ε)

where

Aq(n,m) =


φ(q)
q

∏
p|q

∑
n≤ni
m≤mi

p−
mi+ni

2
∏
p-q
δ(mi = ni ) mn is square

0 otherwise



L-Functions associated to Newforms

Recall f has a fourier expansion at infinity,

f (z) =
∞∑
n=1

λf (n)n
κ−1

2 e2πinz .

Further the λf (n) are multiplicative.

We associate to f an
L-function L(s, f ) defined in the right half plane by the Dirichlet
series:

L(s, f ) =
∞∑
n=1

λf (n)

ns
=
∏
p

(
1− λf (p)

ps
+
χ0(p)

p2s

)
,

where χ0(p) = 0 if p|q and 1 if p 6 |q.



L-Functions associated to Newforms

Recall f has a fourier expansion at infinity,

f (z) =
∞∑
n=1

λf (n)n
κ−1

2 e2πinz .

Further the λf (n) are multiplicative. We associate to f an
L-function L(s, f ) defined in the right half plane by the Dirichlet
series:

L(s, f ) =
∞∑
n=1

λf (n)

ns
=
∏
p

(
1− λf (p)

ps
+
χ0(p)

p2s

)
,

where χ0(p) = 0 if p|q and 1 if p 6 |q.



Moments of L-Functions

In general, it is very difficult to study a single L-function. Instead,
we group them into families that allow us to prove results on
average.

To this end, define the tth shifted moment in level aspect to be:

M(t)(q, κ)α1,α2,...,αt :=
∑

f ∈H∗
κ(q)

ωf

t∏
i=1

L(
1

2
+ αi , f ),

where ωf := cκ
〈f ,f 〉 and the αi satisfy |Re(αi )| < 1

2 and Im(αi )� qε

for any ε > 0.
The main results are the explicit computation of asymptotics of
the first two moments.
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First Moment

Theorem (First Moment)

Let α satisfy |Re(α)| < 1
2 and for all ε > 0, Im(α)� qε, then

M(1)
α (q, k) =

φ(q)

q

∏
p|q

(
1

(1− p−(2+α))

)
+ Ok(q−1−min(0,Re(α))+ε).

where the implied constant depends on k and ε.



Second Moment

Theorem (Second Moment)

With ωf as before and α, β shifts with real part less than 1/2 in
absolute value, and imaginary part bounded be qε for all ε > 0
then for any ε > 0, we have

M(2)
α,β(q, k) =

φ(q)

q

(
ζ(1 + α + β)Aα,β(q) +

(
2π
√
q

)2(α+β)

Γ(α + k
2 )Γ(β + k

2 )

Γ(−α + k
2 )Γ(−β + k

2 )
ζ(1− α− β)A−α,−β(q)+

O(q−
1
2
−min (Re(α),Re(β))+ε)

where the implied constant depends on κ and ε and A(α,β)(q) is an
explicit product over primes dividing q that for α and β with small
real part is bounded and depends on q.



An Application of the First Two Moments

Moments of L-functions have a variety of interesting applications,
we present one introduced by Duke in his paper on moments for
prime level

Corollary (Nonvanishing at the Central Point)

Let Nκ(q) denote the the set of all L-functions associated to
newforms of weight κ and level q such that L( 1

2 , f ) > 0, then
|Nκ(q)| � q

log(q)2

We will need that the weights are relatively uniform, precisely, it is
know that qωf � log(q)
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Proof of Corollary

Via the Cauchy-Schwarz inequality,∣∣∣q ∑
f ∈H∗

κ(q)

ωf L(
1

2
, f )
∣∣∣2 ≤ ∣∣∣ ∑

f ∈Nκ(q)

qωf

∣∣∣∣∣∣q ∑
f ∈H∗

κ(q)

ωf L(
1

2
, f )2

∣∣∣.

But from the asymptotics, we have M(2)
0,0 � log(q) and M(1)

0 � 1
Rearranging ∣∣∣ ∑

f ∈Nk (q)

qωf

∣∣∣� q

log(q)
,

from which the claimed estimate follows
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Idea of Proof of Main Theorem

To derive the approximate version of the trace formula we can use
the orthogonality properties of Chebyshev polynomials

There is a general framework for the moment calculations:

Start with an approximate functional equation for the
L-function

Compute the Dirichlet generating function associated to
orthgonality relation

Shift contours, the main contribution will come the residue
from the pole at zero

Bound the error term, in this case using Poisson summation
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