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Abstract. In this paper, we evaluate the Faltings height of an elliptic curve with complex multi-
plication by an order in an imaginary quadratic �eld in terms of values of Euler's Gamma function
at rational numbers.

1. Introduction

Let L be a number �eld with ring of integers OL. Let E/L be an elliptic curve over L and let
E/OL be a Néron model for E/L. Then the Faltings height of E/L is de�ned by

hFal(E/L) :=
1

[L : Q]
deg(ωE/OL),

where ωE/OL = s∗ΩE/OL is the metrized line bundle on Spec(OL) given by the pullback of the sheaf
of Néron di�erentials ΩE/OL by the zero section s : Spec(OL)→ E (see Section 6). Here the Faltings
height is normalized as in [Sil86].

Now, if E/L has complex multiplication by the ring of integers OK of an imaginary quadratic
�eld K, Deligne [Del85] evaluated the stable Faltings height of E/L in terms of values of Euler's
Gamma function Γ(s) at rational numbers (see the discussion in Remark 1.2). He used this result
to calculate the minimum value attained by the stable Faltings height.

In this paper, we will give a similar formula for the Faltings height of an elliptic curve E/L with
complex multiplication by any order in K (not necessarily maximal). To state this result, let K be
an imaginary quadratic �eld of discriminant D with ideal class group Cl(D), unit group O×K , and
Kronecker symbol χD. Let h(D) = #Cl(D) be the class number and wD = #O×K be the number
of units. Suppose that E/L has complex multiplication by an order Of ⊂ K of conductor f ∈ Z+

and discriminant ∆f = f2D. Let ∆E/L be the minimal discriminant of E/L (which is an integral
ideal of L) and let j(E) be the j-invariant of E/L. Assume that the coe�cients of the Weierstrass
equation for E/L lie in the sub�eld Q(j(E)) ⊂ L.
Theorem 1.1. With notation and assumptions as above, we have

hFal(E/L) = log

NL/Q(∆E/L)1/12[L:Q]

(√
|∆f |
π

)1/2 |D|∏
k=1

Γ

(
k

|D|

)−χD(k)wD/4h(D)∏
p|f

pe(p)/2

 ,

where

e(p) :=
(1− pordp(f))(1− χD(p))

pordp(f)−1(1− p)(χD(p)− p)
.

Remark 1.2. The Faltings height of E/L depends on the number �eld L. This dependence can
be eliminated by passing to a �nite extension L′/L such that E/L′ has everywhere semistable
reduction. In particular, one de�nes the stable Faltings height by

hstabFal (E/L) := hFal(E/L
′).
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The stable Faltings height is independent of both the number �eld L and the choice of extension
L′/L.

Now, assume that E/L is a CM elliptic curve with everywhere good reduction, satisfying the hy-
potheses of Theorem 1.1. Moreover, assume that E has complex multiplication by the maximal order
OK in K. Then the everywhere good reduction assumption implies that hstabFal (E/L) = hFal(E/L)
and that ∆E/L = OL. Also, since OK has conductor f = 1, then Theorem 1.1 gives

hstabFal (E/L) = log

(√|D|
π

)1/2 |D|∏
k=1

Γ

(
k

|D|

)−χD(k)wD/4h(D)
 . (1.1)

On the other hand, Deligne [Del85, p. 27] de�ned a di�erent normalization of the stable Faltings
height, which he called the geometric height of E and denoted by hgeom(E). It can be shown that

hgeom(E) = hstabFal (E/L) +
1

2
log π. (1.2)

Deligne then observed (see [Del85, p. 29]) that the classical Chowla-Selberg formula [CS67] can be
used to prove that

exp (hgeom(E))−2 =
1√
|D|

|D|∏
k=1

Γ

(
k

|D|

)χD(k)wD/2h(D)

. (1.3)

If we substitute the evaluation of hstabFal (E/L) from (1.1) into equation (1.2) and then exponentiate,
we recover Deligne's result (1.3) as a special case of Theorem 1.1 when the elliptic curve has complex
multiplication by the maximal order OK .

An important step in the proof of Theorem 1.1 is a Chowla-Selberg formula for any order in K
(not necessarily maximal). An arithmetic-geometric proof of such a formula was given by Nakkajima
and Taguchi [NT91] by employing a theorem of Faltings which relates the Faltings heights of two
isogenous abelian varieties. Kaneko brie�y outlined an analytic approach to the same formula in
the research announcement [Kan90]. Here we give a detailed analytic proof of a Chowla-Selberg
formula for orders in K. This proof is based on a renormalized Kronecker limit formula for the
non-holomorphic SL2(Z) Eisenstein series, a period formula which relates the zeta function of an
order in K to values of the Eisenstein series at CM points corresponding to classes in the ideal class
group of the order, and a factorization of the zeta function of an order given by Zagier [Zag77], and
in an equivalent but di�erent form by Kaneko [Kan90].

2. An example of Theorem 1.1

In this section, we use Theorem 1.1 and SageMath [S+09] to explicitly calculate both the unstable
and the stable Faltings height of a CM elliptic curve de�ned over L = Q(

√
6).

Let K = Q(
√
−2) be the imaginary quadratic �eld of discriminant D = −8. Let OK = Z

[√
−2
]

be the ring of integers and let

O3 = Z + 3OK = Z[3
√
−2]

be the order of conductor f = 3 in K. Kida [Kid01] computed tables of elliptic curves with
everywhere good reduction over quadratic �elds. In particular, the �rst entry in [Kid01, Table 4, p.
557] with the choices m = 6,

j = j(3
√
−2) = 188837384000 + 77092288000

√
6,

and

u = 9600500 + 3894730
√

6



FALTINGS HEIGHTS OF CM ELLIPTIC CURVES AND SPECIAL GAMMA VALUES 3

gives the elliptic curve

E/L : y2 = x3 + (−213956647452306361344000− 87347435555321131008000
√

6)x

− 53870596781293500420067393011712000

− 21992579042231152861893869174784000
√

6,

which is de�ned over L, has j-invariant j(E) = j, and complex multiplication by the non-maximal
order O3. The minimal discriminant ideal of E/L is

∆E/L = (− 2504693124549627605027212944424000000

+ 804798587063718019634525385680000000
√

6)OL.
The norm of ∆E/L is given by

NL/Q(∆E/L) = 218 · 512 · 712 · 236 · 296 · 476 · 536 · 716.

On the other hand, letting L′ = L(
√
u) = Q(

√
u), the same entry in Kida's table gives the quartic

twist

Eu/L′ : y2 = x3 + (−78385716591330516253647775671705600000

− 32000834795195545336704672717619200000
√

6)x

− 377762209467237733195528032891831932481324956254208000000

− 154220776216851533553188975993060485857126526746624000000
√

6,

which is de�ned over L′ and isomorphic to E/L over L′, has j-invariant j(Eu) = j(E) = j, and
complex multiplication by the order O3. Moreover, Eu/L′ has minimal discriminant ideal ∆Eu/L′ =
OL′ , and thus Eu/L′ has everywhere good reduction over L′.

Now, since the discriminant of K is D = −8 and the conductor of the order O3 is f = 3, we see
that ∆3 = −72, w−8 = 2 and h(−8) = 1. The Kronecker symbol values are χ−8(k) = 1 for k = 1, 3
and χ−8(k) = −1 for k = 5, 7, and hence e(3) = 0. Therefore, noting that the coe�cients of E/L
are contained in Q(j(E)) = L, Theorem 1.1 gives us

hFal(E/L) = log

NL/Q(∆E/L)1/12[L:Q]

(√
|∆3|
π

)1/2 8∏
k=1

Γ

(
k

8

)−χ−8(k)/2
 .

After expanding, we get

hFal(E/L) = log

23/451/271/2231/4291/4471/4531/4711/4

(
6
√

2

π

)1/2(
Γ(5/8)Γ(7/8)

Γ(1/8)Γ(3/8)

)1/2
 .

Similarly, noting that the coe�cients of Eu/L′ are also contained in Q(j(Eu)) = L ⊂ L′, Theorem
1.1 gives the following formula for the stable Faltings height,

hstabFal (E/L) = hFal(E
u/L′) = log

NL′/Q(∆Eu/L′)
1/12[L′:Q]

(√
|∆3|
π

)1/2 8∏
k=1

Γ

(
k

8

)−χ−8(k)/2
 .

After expanding and using the fact that NL′/Q(∆Eu/L′) = 1, we get

hstabFal (E/L) = log

(6
√

2

π

)1/2(
Γ(5/8)Γ(7/8)

Γ(1/8)Γ(3/8)

)1/2
 .

Numerically, these values of the Faltings height are hFal(E/L) ≈ 6.22291129399367 and hstabFal (E/L) ≈
−0.721100481725771.
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3. Taylor expansion of the non-Holomorphic Eisenstein series

Let H denote the complex upper half-plane and de�ne the stabilizer of the cusp ∞ by

Γ∞ :=

{(
1 n
0 1

)
: n ∈ Z

}
.

Then the non-holomorphic SL2(Z) Eisenstein series is de�ned by

E(z, s) :=
∑

M∈Γ∞\SL2(Z)

Im(Mz)s, z = x+ iy ∈ H, Re(s) > 1.

Now, the Eisenstein series has the well-known Fourier expansion (see e.g. [Zag81, p. 278])

E(z, s) = ys +
√
π

Γ(s− 1
2)

Γ(s)

ζ(2s− 1)

ζ(2s)
y1−s +

4πs

Γ(s)ζ(2s)

√
y
∞∑
n=1

σ1−2s(n)ns−
1
2Ks− 1

2
(2πny) cos(2πnx),

where Γ(s) is Euler's Gamma function, ζ(s) is the Riemann zeta function, σk(n) :=
∑

`|n `
k is the

k-divisor function, and Kν is the K-Bessel function of order ν. The Fourier expansion shows that
E(z, s) extends to a meromorphic function on C with a simple pole at s = 1.

We next make the shift s 7→ (s+1)/2 in the Fourier expansion of E(z, s) and calculate the Taylor
expansion of the shifted Eisenstein series E(z, (s+ 1)/2) at s = −1. For convenience, write

E

(
z,
s+ 1

2

)
= A(z, s) +B(z, s) + C(z, s)

where

A(z, s) := y
s+1
2 , B(z, s) :=

√
π

Γ( s2)

Γ( s+1
2 )

ζ(s)

ζ(s+ 1)
y

1−s
2 , and

C(z, s) :=
4π

s+1
2
√
y

Γ( s+1
2 )ζ(s+ 1)

∞∑
n=1

σ−s(n)n
s
2K s

2
(2πny) cos(2πnx).

Then the Taylor expansions of A,B and C at s = −1 are given as follows,

A(z, s) = 1 + log(
√
y)(s+ 1) +O((s+ 1)2),

B(z, s) = −π
6
y(s+ 1) +O((s+ 1)2), and

C(z, s) =

(
−2

∞∑
n=1

σ1(n)e−2πny cos(2πnx)

n

)
(s+ 1) +O((s+ 1)2).

By combining these Taylor expansions, we get

E

(
z,
s+ 1

2

)
= 1 +

(
log(
√
y)− π

6
y − 2

∞∑
n=1

σ1(n)

n
e−2πny cos(2πnx)

)
(s+ 1) +O((s+ 1)2). (3.1)

Next, recall that the Dedekind eta function is the weight 1/2 modular form for SL2(Z) de�ned
by the in�nite product

η(z) := q1/24
∞∏
n=1

(1− qn), q := e2πiz, z ∈ H.

One has the following identity relating the second term in the Taylor expansion of E(z, (s+1)/2)
at s = −1 to η(z).
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Proposition 3.1. We have

log(
√
y|η(z)|2) = log(

√
y)− π

6
y − 2

∞∑
n=1

σ1(n)

n
e−2πny cos(2πnx). (3.2)

Proof. De�ne the complex-valued logarithm Log(z) := log |z| + iArg(z) where −π < Arg(z) ≤ π.
Then noting that log |z| = Re(Log(z)), we have

log |η(z)| = Re(Log(η(z))) = Re

(
Log

(
q1/24

∞∏
n=1

(1− qn)

))

= Re(Log(q1/24)) + Re

(
Log

( ∞∏
n=1

(1− qn)

))
.

Now, observe that

Re(Log(q1/24)) = Re
(

log |q1/24|+ iArg(q1/24)
)

= log(e−
πy
12 ) = −πy

12
.

Also, using the power series expansion

Log(1− z) = −
∞∑
m=1

zm

m
, |z| < 1

we get

Re

(
Log

( ∞∏
n=1

(1− qn)

))
= Re

( ∞∑
n=1

Log(1− qn)

)

= −Re

( ∞∑
n=1

∞∑
m=1

qmn

m

)

= −Re

( ∞∑
`=1

σ1(`)

`
q`

)

= −Re

( ∞∑
`=1

σ1(`)

`
e2πi`xe−2π`y

)

= −Re

( ∞∑
`=1

σ1(`)

`
(cos(2π`x) + i sin(2π`x))e−2π`y

)

= −
∞∑
`=1

σ1(`)

`
e−2π`y cos(2π`x).

Then combining these calculations yields

log(
√
y|η(z)|2) = log(

√
y) + 2 log |η(z)| = log(

√
y)− π

6
y − 2

∞∑
`=1

σ1(`)

`
e−2π`y cos(2π`x).

�

Finally, by combining (3.1) and (3.2), we arrive at the �renormalized� Kronecker limit formula

E

(
z,
s+ 1

2

)
= 1 + log(F (z))(s+ 1) +O((s+ 1)2), (3.3)

where we have de�ned

F (z) :=
√
Im(z)|η(z)|2. (3.4)
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Observe that the function F (z) is SL2(Z)-invariant.

4. Zeta functions of orders and CM values of Eisenstein series

We begin by recalling some facts regarding orders in imaginary quadratic �elds (see e.g. Cox
[Cox13, �7]). Let K be an imaginary quadratic �eld of discriminant D. Given f ∈ Z+, let Of be
the (unique) order of conductor f in K. A fractional Of -ideal a is a subset of K which is a non-zero
�nitely generated Of -module. A fractional Of -ideal a is proper if

Of = {β ∈ K : βa ⊂ a}.
It is known that a fractional Of -ideal is invertible if and only if it is proper (see [Cox13, Proposition
7.4]). Accordingly, let I(Of ) be the group of proper fractional Of -ideals, and let P (Of ) be the
subgroup of I(Of ) consisting of principal fractional Of -ideals. The ideal class group of Of is
de�ned as the quotient group

Cl(Of ) := I(Of )/P (Of ).

Let h(Of ) = # Cl(Of ) be the class number of Of .
The Dedekind zeta function of Of is de�ned by

ζOf (s) :=
∑

a∈I(Of )
a⊂Of

1

N(a)s
, Re(s) > 1.

Similarly, given an ideal class A ∈ Cl(Of ), we de�ne the ideal class zeta function by

ζA(s) :=
∑
I∈A
I⊂Of

1

N(I)s
, Re(s) > 1.

Then we have the decomposition

ζOf (s) =
∑

A∈Cl(Of )

ζA(s).

Now, the discriminant of Of is given by ∆f = f2D. By [Cox13, Theorem 7.7], we may choose a
proper integral ideal a ∈ A with

a = Za+ Z

(
−b+

√
∆f

2

)
where [a, b, c](X,Y ) = aX2 + bXY + cY 2 is a quadratic form of discriminant b2 − 4ac = ∆f with
(a, b, c) = 1 and a = N(a) > 0.

For α ∈ K, let α′ denote the image of α under the nontrivial automorphism of K. Then

a′ = Za+ Z

(
b+

√
∆f

2

)
.

Moreover, by [Cox13, equation (7.6)] we have a−1 = 1
aa
′, and thus

a−1 = Z + Z

(
b+

√
∆f

2a

)
= Z + Zza−1 (4.1)

where

za−1 :=
b+

√
∆f

2a
∈ H

is the root in the complex upper half-plane of the dehomogenized form [a,−b, c](X, 1) = aX2−bX+c.
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Let O×f be the group of units in Of , and let wf = #O×f .
Proposition 4.1. With notation as above, we have

ζ[a](s) =
2

wf

(√
|∆f |
2

)−s
ζ(2s)E(za−1 , s).

We will need the following lemma.

Lemma 4.2. Let a be a proper fractional Of -ideal. Then the map

φ : (a−1 \ {0})/O×f −→ {I ∈ [a] : I ⊂ Of}

de�ned by φ([α]) = αa is a bijection.

Proof. We �rst prove that the map φ is well-de�ned. Observe that if α ∈ a−1, then αa ⊆ Of since

a−1a = Of . Next, observe that if [α] = [β], then α = βu for some unit u ∈ O×f . It follows that
αOf = βuOf = βOf , and hence αa = βa. This proves that φ is well-de�ned.

To prove that φ is injective, suppose that αa = βa. Then αaa−1 = βaa−1, which implies that
αOf = βOf , or equivalently, that [α] = [β]. This proves that φ is injective.

To prove that φ is surjective, suppose that I ∈ [a] with I ⊂ Of . Then I = αa for some α ∈ K×,
or equivalently, Ia−1 = αOf . Since I is integral, we have Ia−1 ⊂ a−1, so that α ∈ a−1. Then

[α] ∈ (a−1 \ {0})/O×f with φ([α]) = αa = I. This proves that φ is surjective. �

We now prove Proposition 4.1.

Proof of Proposition 4.1: Using Lemma 4.2 and (4.1), we get

ζ[a](s) =
∑
I∈[a]
I⊂Of

1

N(I)s
=

∑
06=α∈a−1/O×f

1

N(αa)s

=
1

N(a)s

∑
06=α∈a−1/O×f

1

N(α)s

=
1

as

∑
06=α∈a−1/O×f

1

|α|2s

=
1

wfas

∑
(0,0)6=(m,n)∈Z2

1

|m+ nza−1 |2s

=
1

wf

(√
|∆f |
2

)−s(√
|∆f |
2a

)s ∑
(0,0) 6=(m,n)∈Z2

1

|m+ nza−1 |2s

=
1

wf

(√
|∆f |
2

)−s ∑
(0,0)6=(m,n)∈Z2

Im(za−1)s

|m+ nza−1 |2s
.

Now, de�ne the quadratic form

Qz(m,n) :=
|m+ nz|2

Im(z)
, z ∈ H

and the associated Epstein zeta function

Z(Qz, s) :=
∑

(0,0)6=(m,n)∈Z2

1

Qz(m,n)s
, Re(s) > 1. (4.2)



8 A. BARQUERO-SANCHEZ, L. CADWALLADER, O. CANNON, T. GENAO, AND R. MASRI

Then one has the following well-known identity (see e.g. [Zag81, equation (2)]),

Z(Qz, s) = 2ζ(2s)E(z, s). (4.3)

Finally, using (4.2) and (4.3), it follows that∑
(0,0)6=(m,n)∈Z2

Im(za−1)s

|m+ nza−1 |2s
= Z(Qza−1 , s) = 2ζ(2s)E(za−1 , s).

�

5. A Chowla-Selberg formula for imaginary quadratic orders

In this section we will prove the following theorem.

Theorem 5.1. With notation as in Section 4, we have∏
[a]∈Cl(Of )

F (za−1) =

(
1

4π
√
|∆f |

)h(Of )/2 |D|∏
k=1

Γ

(
k

|D|

)χD(k)wDh(Of )/4h(D)∏
p|f

p−e(p)h(Of )/2,

where F (z) is de�ned in (3.4), za−1 is a CM point as in (4.1), and

e(p) :=
(1− pordp(f))(1− χD(p))

pordp(f)−1(1− p)(χD(p)− p)
.

Before proving Theorem 5.1, we demonstrate how it can be used to explicitly evaluate a CM
value of η(z). We then numerically verify the resulting identity using SageMath [S+09].

Example 5.2. Let K = Q(i), and consider the order of conductor f = 2 in K, i.e., the non-
maximal order O2 = Z+ 2Z[i] = Z+Z2i. Since the discriminant of K is D = −4, the discriminant
of the order is ∆2 = 22(−4) = −16, and also h(−4) = 1 and w−4 = 4. Using SageMath, we �nd
that h(O2) = 1, and hence Cl(O2) = {[O2]}. Since O−1

2 = O2 = Z + Z2i, from (4.1) we can take
zO−1

2
= 2i for the CM point. It follows that∏

[a]∈Cl(O2)

F (za−1) = F (zO−1
2

) = F (2i) =
√

Im(2i)|η(2i)|2 =
√

2|η(2i)|2.

On the other hand, we have(
1

4π
√
|∆2|

)h(O2)/2 4∏
k=1

Γ

(
k

4

)χ−4(k)w−4h(O2)/4h(−4)∏
p|2

pe(p)h(O2)/2 =
1

4
√
π

4∏
k=1

Γ

(
k

4

)χ−4(k)

2e(2)/2.

Therefore, by Theorem 5.1 we get

√
2|η(2i)|2 =

1

4
√
π

4∏
k=1

Γ

(
k

4

)χ−4(k)

2e(2)/2. (5.1)

Now, the values of the Kronecker symbol are χ−4(1) = 1, χ−4(2) = 0, χ−4(3) = −1, and χ−4(4) =
0. Since χ−4(2) = 0, we see that e(2) = 1/2. Therefore, after expanding the product in (5.1) we get

√
2|η(2i)|2 =

1

27/4π1/2
Γ

(
1

4

)
Γ

(
3

4

)−1

. (5.2)

Furthermore, using the re�ection formula

Γ(z)Γ(1− z) =
π

sin(πz)
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with z = 1/4 yields

Γ

(
3

4

)
= π
√

2Γ

(
1

4

)−1

.

Then, substituting this into (5.2) gives

|η(2i)|2 =
1

211/4π3/2
Γ

(
1

4

)2

.

Finally, observing that η(2i) is a positive real number, we see that

η(2i) =
1

211/8π3/4
Γ

(
1

4

)
.

Using SageMath, one can check that both sides of the previous equality are approximately
0.592382781332416, which serves as a numerical veri�cation of the identity in Theorem 5.1.

Proof of Theorem 5.1: By Proposition 4.1, we have

ζ[a] ((s+ 1)/2) =
2

wf

(√
|∆f |
2

)−(s+1)/2

ζ(s+ 1)E (za−1 , (s+ 1)/2) .

Then summing over all ideal classes in Cl(Of ) yields

ζOf ((s+ 1)/2) =
2

wf

(√
|∆f |
2

)−(s+1)/2

ζ(s+ 1)
∑

[a]∈Cl(Of )

E (za−1 , (s+ 1)/2) .

For convenience, de�ne the function

gOf (s) :=
wf
2

(√
|∆f |
2

)(s+1)/2
ζOf ((s+ 1)/2)

ζ(s+ 1)
,

so that

gOf (s) =
∑

[a]∈Cl(Of )

E (za−1 , (s+ 1)/2) . (5.3)

Then recalling the renormalized Kronecker limit formula (3.3), comparing Taylor expansions at
s = −1 on both sides of (5.3) yields

g′Of (−1) =
∑

[a]∈Cl(Of )

log(F (za−1)),

or equivalently, ∏
[a]∈Cl(Of )

F (za−1) = exp(g′Of (−1)). (5.4)

It remains to calculate g′Of (−1).

Our starting point is the factorization (see e.g. [AIK14, Proposition 10.18 (2)])

ζOf (s) = ζ(s)Lf (s)L(χD, s),

where

Lf (s) :=
∏
p|f

(1− p−s)(1− χD(p)p−s)− pordp(f)(1−2s)−1(1− p1−s)(χD(p)− p1−s)

1− p1−2s
.
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Then we may write

gOf (s) =
wf
2

(√
|∆f |
2

)(s+1)/2
ζ ((s+ 1)/2)

ζ(s+ 1)
Lf ((s+ 1)/2)L (χD, (s+ 1)/2) .

Now, a calculation with the product rule yields

g′Of (−1) =
wf
4
Lf (0)L(χD, 0)

(
log

(√
|∆f |
2

)
− ζ ′(0)

ζ(0)
+
L′(χD, 0)

L(χD, 0)
+
L′f (0)

Lf (0)

)
.

To further simplify this identity, we note that

Lf (0) = f
∏
p|f

(
1− χD(p)

p

)
.

Then using Dirichlet's class number formula

L(χD, 0) = 2h(D)/wD, (5.5)

the identity (see e.g. [Cox13, Theorem 7.24])

h(Of ) =
h(D)f

[O×K : O×f ]

∏
p|f

(
1− χD(p)

p

)
,

and [O×K : O×f ] = wD/wf , we get

wf
4
Lf (0)L(χD, 0) =

h(Of )

2
.

It follows that

g′Of (−1) =
h(Of )

2

(
log

(√
|∆f |
2

)
− ζ ′(0)

ζ(0)
+
L′(χD, 0)

L(χD, 0)
+
L′f (0)

Lf (0)

)
. (5.6)

We next evaluate the logarithmic derivatives of ζ(s), L(χD, s) and Lf (s) at s = 0. First, using

the special values ζ(0) = −1
2 and ζ ′(0) = −1

2 log(2π), we get

ζ ′(0)

ζ(0)
= log(2π). (5.7)

Next, we have the decomposition

L(χD, s) = |D|−s
|D|∑
k=1

χD(k)ζ

(
s,

k

|D|

)
, (5.8)

where

ζ(s, x) :=

∞∑
n=0

1

(n+ w)s
, x > 0, Re(s) > 1

is the Hurwitz zeta function. Lerch [Ler87] showed that

ζ(s, x) =
1

2
− x+ log

(
Γ(x)√

2π

)
s+O(s2), (5.9)

where

Γ(s) :=

∫ ∞
0

ts−1e−tdt
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is Euler's gamma function. Then we substitute (5.9) into (5.8), di�erentiate, and use the class
number formula (5.5) to get

L′(χD, 0)

L(χD, 0)
= − log(|D|) +

wD
2h(D)

|D|∑
k=1

χD(k) log

(
Γ

(
k

|D|

))
. (5.10)

Finally, by Lemma 5.3 (which is stated and proved at the end of this section), we have

L′f (0)

Lf (0)
= log

f−2
∏
p|f

p−e(p)

 , (5.11)

where

e(p) :=
(1− pordp(f))(1− χD(p))

pordp(f)−1(1− p)(χD(p)− p)
.

Substituting the logarithmic derivatives (5.7), (5.10), and (5.11) into (5.6) and using |∆f | = f2|D|,
we get

g′Of (−1) =
h(Of )

2
log

( √
|∆f |

4πf2|D|

) |D|∏
k=1

Γ

(
k

|D|

)χD(k)wD/2h(D)∏
p|f

p−e(p)


= log

( 1

4π
√
|∆f |

)h(Of )/2 |D|∏
k=1

Γ

(
k

|D|

)χD(k)wDh(Of )/4h(D)∏
p|f

p−e(p)h(Of )/2

 .

Therefore,

exp(g′Of (−1)) =

(
1

4π
√
|∆f |

)h(Of )/2 |D|∏
k=1

Γ

(
k

|D|

)χD(k)wDh(Of )/4h(D)∏
p|f

p−e(p)h(Of )/2,

which by virtue of (5.4) proves the theorem. �

It remains to prove the following lemma.

Lemma 5.3. We have

L′f (0)

Lf (0)
= log

f−2
∏
p|f

p−e(p)

 ,

where

e(p) :=
(1− pordp(f))(1− χD(p))

pordp(f)−1(1− p)(χD(p)− p)
.

Proof. De�ne the functions

Gp(s) := (1− p−s)(1− χD(p)p−s)− pordp(f)(1−2s)−1(1− p1−s)(χD(p)− p1−s)

and

Hp(s) := 1− p1−2s.

Then Lf (s) can be written as

Lf (s) =
∏
p|f

Gp(s)

Hp(s)
.
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Now, we have

L′f (s)

Lf (s)
=

d

ds
log (Lf (s)) =

d

ds
log

∏
p|f

Gp(s)

Hp(s)


=

d

ds

∑
p|f

log

(
Gp(s)

Hp(s)

)

=
∑
p|f

(
d

ds
log (Gp(s))−

d

ds
log (Hp(s))

)

=
∑
p|f

(
G′p(s)

Gp(s)
−
H ′p(s)

Hp(s)

)
.

Therefore, it su�ces to evaluate the logarithmic derivatives of Gp(s) and Hp(s) at s = 0.
Since

H ′p(s) = 2 log(p)p1−2s,

we get

1

log(p)

H ′p(0)

Hp(0)
=

2p

1− p
.

Next, a calculation with the product rule yields

G′p(s) = (1− p−s) log(p)χD(p)p−s + (1− χD(p)p−s) log(p)p−s

+ 2 ordp(f) log(p)pordp(f)(1−2s)−1(1− p1−s)(χD(p)− p1−s)

− pordp(f)(1−2s)−1(χD(p)− p1−s) log(p)p1−s

− pordp(f)(1−2s)−1(1− p1−s) log(p)p1−s,

so that

1

log(p)

G′p(0)

Gp(0)
=

1− χD(p) + 2 ordp(f)pordp(f)−1(1− p)(χD(p)− p)− pordp(f)(χD(p)− p)− pordp(f)(1− p)
−pordp(f)−1(1− p)(χD(p)− p)

.

Combining the preceding calculations gives

1

log(p)

(
G′p(0)

Gp(0)
−
H ′p(0)

Hp(0)

)
=

1− χD(p) + 2 ordp(f)pordp(f)−1(1− p)(χD(p)− p)− pordp(f)(χD(p)− p)− pordp(f)(1− p)
−pordp(f)−1(1− p)(χD(p)− p)

− 2p

1− p

= −2 ordp(f) +
1− χD(p)− pordp(f)(χD(p)− p)− pordp(f)(1− p) + 2pordp(f)(χD(p)− p)

−pordp(f)−1(1− p)(χD(p)− p)

= −2 ordp(f)− (1− pordp(f))(1− χD(p))

pordp(f)−1(1− p)(χD(p)− p)
.
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Finally, we have

L′f (0)

Lf (0)
=
∑
p|f

− log(p)

(
2 ordp(f) +

(1− pordp(f))(1− χD(p))

pordp(f)−1(1− p)(χD(p)− p)

)

= log

∏
p|f

p
−
(

2 ordp(f)+
(1−pordp(f))(1−χD(p))

pordp(f)−1(1−p)(χD(p)−p)

)
= log

∏
p|f

pordp(f)

−2∏
p|f

p−e(p)


= log

f−2
∏
p|f

p−e(p)

 .

�

6. Faltings heights of CM elliptic curves and the proof of Theorem 1.1

We �rst recall the de�nition of the Faltings height of an elliptic curve (see e.g. [Sil86] and [Mil08,
Chapter 26]). Let L be a number �eld with ring of integers OL. Let E/L be an elliptic curve over
L and let E/OL be a Néron model for E/L. Then the Faltings height of E/L is de�ned by

hFal(E/L) :=
1

[L : Q]
deg(ωE/OL),

where ωE/OL = s∗ΩE/OL is the metrized line bundle on Spec(OL) given by the pullback of the sheaf
of Néron di�erentials ΩE/OL by the zero section s : Spec(OL)→ E .

The Faltings height can be given more explicitly as follows. Given a di�erential ω ∈ H0(E/L,ΩE/L),
we have

hFal(E/L) =
log(#(ΩE/L/OLω))

[L : Q]
− 1

2[L : Q]

∑
σ:L↪→C

log

(
i

2

∫
Eσ(C)

ωσ ∧ ωσ
)
.

Now, recall that ∆E/L is the minimal discriminant of E/L and j(E) is the j-invariant of E/L.
The following proposition is based on a result of Silverman [Sil86, Proposition 1.1].

Proposition 6.1. Suppose that E/L has complex multiplication by an order Of in an imaginary
quadratic �eld K. Then if the Weierstrass equation for E has coe�cients in Q(j(E)) ⊂ L, we have

hFal(E/L) =
log(NL/Q(∆E/L))

12[L : Q]
− log(2π)− 1

h(Of )

∑
[a]∈Cl(Of )

log(F (za−1)),

where F (z) is de�ned in equation (3.4) and za−1 is a CM point as in equation (4.1).

Proof. Given σ ∈ Hom(L,C), let zσ ∈ H be a complex number such that

Eσ(C) ∼= C/(Z + Zzσ). (6.1)

Moreover, let ∆(z) := (2π)12η(z)24 be the discriminant function. Then Silverman [Sil86, Proposition
1.1] proved that the Faltings height of E/L is given by

hFal(E/L) =
log(NL/Q(∆E/L))

12[L : Q]
− 1

12[L : Q]

∑
σ∈Hom(L,C)

log(Im(zσ)6|∆(zσ)|). (6.2)
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Since
1

12
log(Im(zσ)6|∆(zσ)|) = log(2π) + log(F (zσ)),

equation (6.2) becomes

hFal(E/L) =
log(NL/Q(∆E/L))

12[L : Q]
− log(2π)− 1

[L : Q]

∑
σ∈Hom(L,C)

log(F (zσ)). (6.3)

Now, write ∑
σ∈Hom(L,C)

log(F (zσ)) =
∑

τ∈Hom(Q(j(E)),C)

∑
σ∈Hom(L,C)
σ|Q(j(E))=τ

log(F (zσ)).

Since E/L has coe�cients in Q(j(E)), for each �xed τ ∈ Hom(Q(j(E)),C) we can take the same
zσ ∈ H in the isomorphism (6.1) for all σ ∈ Hom(L,C) such that σ|Q(j(E)) = τ . Therefore, if we let
στ ∈ Hom(L,C) denote any of the [L : Q(j(E))] embeddings which extend τ ∈ Hom(Q(j(E)),C),
we have ∑

τ∈Hom(Q(j(E)),C)

∑
σ∈Hom(L,C)
σ|Q(j(E))=τ

log(F (zσ)) =
∑

τ∈Hom(Q(j(E)),C)

[L : Q(j(E))] log(F (zστ )).

By Shimura [Shi94, Theorem 7.6], we have [Q(j(E)) : Q] = h(Of ) and

{j(E)τ : τ ∈ Hom(Q(j(E)),C)} = {j(a−1) : [a] ∈ Cl(Of )}.

Then for each τ ∈ Hom(Q(j(E)),C), there is a unique [a] ∈ Cl(Of ) such that Eστ (C) ∼= C/a−1.
Recalling that a−1 = Z + Zza−1 , we get

C/(Z + Zzστ ) ∼= C/(Z + Zza−1),

and thus the points zστ and za−1 are SL2(Z)-equivalent (see e.g. [Sil94, Proposition I.4.4]). Since
F (z) is SL2(Z)-invariant, it follows that∑

τ∈Hom(Q(j(E)),C)

[L : Q(j(E))] log(F (zστ )) =
[L : Q]

h(Of )

∑
[a]∈Cl(Of )

log(F (za−1)).

Finally, the preceding calculations yield

1

[L : Q]

∑
σ∈Hom(L,C)

log(F (zσ)) =
1

h(Of )

∑
[a]∈Cl(Of )

log(F (za−1)),

which by virtue of (6.3) completes the proof.
�

We are now in a position to prove Theorem 1.1.

Proof of Theorem 1.1: By Proposition 6.1, we have

hFal(E/L) = log

NL/Q(∆E/L)1/12[L:Q](2π)−1
∏

[a]∈Cl(Of )

F (za−1)−1/h(Of )

 . (6.4)

Moreover, by Theorem 5.1 we have∏
[a]∈Cl(Of )

F (za−1)−1/h(Of ) =

(
1

4π
√
|∆f |

)−1/2 |D|∏
k=1

Γ

(
k

|D|

)−χD(k)wD/4h(D)∏
p|f

pe(p)/2. (6.5)

Then by substituting (6.5) into (6.4) and simplifying, we obtain Theorem 1.1. �
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