Neural Codes: Convexity and Computability

Aaron Chen

Cornell University

July 18th, 2016

Motivation

O'Keefe et al. discovered place cells in the 70's (2014 Nobel Prize)

- Place cells encode where an animal is spacially by firing when the animal is in a certain region (approximated by a convex open set).
- More generally, consider a collection $\mathcal{U} = \{U_1, ..., U_n\}$ of open sets in \mathbb{R}^d , corresponding to locations where a neuron will fire.
- A neural code describes the sets of neurons that can fire simultaneously, or the intersections of the sets in U.

What is a Neural Code?

Definition

A neural code C is a subset of $2^{[n]}$, and each $\sigma \in C$ is called a codeword. Codewords that are maximal with respect to set inclusion are called maximal.

Example

An example of a neural code is $C = \{\emptyset, \{1, 2, 3\}, \{1, 2\}\{1, 4\}\}$. For brevity we write $C = \{\emptyset, 123, 12, 14\}$. 123 and 14 are the maximal codewords.

We will talk about intersections and size of codewords in the set theoretic sense.

Realization of Neural Codes

Definition

A code C is **realized** by open sets $U_1, ..., U_n$ if

$$\sigma \in \mathcal{C} \Longleftrightarrow \bigcap_{i \in \sigma} U_i \setminus \bigcup_{j \notin \sigma} U_j \neq \emptyset$$

Figure 1: A realization of the code $C = \{123, 234, 12, 23, 13, 24, 34, 1, 2, 3, 4, \emptyset\}$

Definition

A neural code is **convex** if it can be realized by convex open sets $U_1, ..., U_n$.

Figure 2: (Nonexample): The code $C = \{12, 13, \emptyset\}$ is not convex.

The Big Question:

Question

Given a neural code C, is there a way to determine whether C is convex or not?

- There exist conditions that imply convexity
- There exist conditions that imply non-convexity
- But there are no known necessary **and** sufficient conditions for convexity

Good cover codes

A similar (and strictly weaker) property than convexity is that of being a good cover code.

Definition

A neural code C is said to be a **good-cover code** if C can be realized by contractible open sets U such that any intersection of sets in U is also contractible.

Simplicial Complexes

Definition

An abstract simplicial complex on n vertices is a subset of $2^{[n]}$ that is closed under taking subsets. We can topologically realize any simplicial complex (on n vertices) as a subset of the n-simplex in Euclidean space.

Definition

Given C, we define $\Delta(C)$ to be the smallest simplicial complex containing C.

Simplicial Complexes

Figure 3: The code $C = \{12, 23, 1, 2, 3, \emptyset\}$ is convex and a good-cover code. Its simplicial complex, $\Delta(C)$, is realized below.

The link of a simplicial complex

Definition

The **link** of a face σ in a simplicial complex Δ is denoted as

$$\mathsf{Lk}_{\sigma}(\Delta) = \{ au \in \Delta \mid \sigma \cap au = \emptyset ext{ and } \sigma \cup au \in \Delta\}.$$

Figure 4: The link of the green vertex in the simplicial complex on the left is shown in blue.

Mandatory Codewords

Definition

Given a simplicial complex Δ , we define $\mathcal{M}(\Delta)$ to be the set of all faces σ that are intersections of maximal faces of Δ and where $Lk_{\sigma}(\Delta)$ is not contractible. $\mathcal{M}(\Delta)$ is called the set of **mandatory** codewords for any C such that $\Delta(C) = \Delta$.

The definition is motivated from that fact (not obvious) that any code that does not contain all of its mandatory codewords cannot be convex (or even a good cover code).

Definition

A neural code C is said to be locally good if it contains all mandatory codewords.

What we already know

Let $\ensuremath{\mathcal{C}}$ be a neural code. We have the following results:

Theorem (Curto et al.)

If \mathcal{C} is a good cover code, \mathcal{C} is locally good

Note that it follows that if C is convex, then C is locally good.

Theorem (Leincamper et al.)

There exists a code that is locally good but not convex.

${\sf Locally good} = {\sf good cover}$

Theorem (C.)

A code C is locally good if and only if C is a good-cover code.

This equates being locally good (which is a strictly local property) with being a good cover code (which means our code has a global "almost convex" realization).

Decision problems for neural codes

One of our main goals to find a characterization for when a neural code is convex. However, is this even possible?

Theorem (C.)

The problem of deciding whether a neural code is locally good is undecidable.

Proof.

- Deciding whether a simplicial complex is contractible is undecidable.
- Outline of reduction: build a neural code based on any simplicial complex so that the code is locally good iff our complex is contractible.

A new type of obstruction

Liencamper et al. gave the first counterexample for a neural code that is locally good but not convex. However, the counterexample in question had two alternative ways to resolve the "obstruction."

Theorem (C.)

There exists a locally good nonconvex code C where $|\Delta(C) - C| = 1$.

Because convexity is a monotone property for neural codes with the same simplicial complex, this can be generalized to a new kind of local obstruction.

Future work

The following are several unresolved problems that are closely related to what we have done:

- We say a code is k-sparse if for all σ ∈ C, |σ| ≤ k. Are 3-sparse locally good codes convex? (yes for 2, no for 4)
- Is convexity decidable? If so then what is its complexity?
- Finding a necessary and sufficient criterion for convexity.

Acknowledgments

This work was conducted at a 2016 REU at Texas A&M, "Algebraic Methods in Computational Biology," which was supported by NSF DMS-1460766. The author would like to thank Anne Shiu for her guidance and insights as well as Martin Tancer for productive discussions on convex geometry.