Bounding the Number of Distinct *p*-adic Valuations of Integer Roots of Certain SPS-Polynomials

Kayla Cummings

Pomona College

July 18, 2016

Kayla Cummings

Polynomial Roots and p-adic Valuations

Definition

For $f \in \mathbb{Z}[x]$, $\tau(f)$ is the minimum number of steps required to build f from 1 and x.

Definition

For $f \in \mathbb{Z}[x]$, $\tau(f)$ is the minimum number of steps required to build f from 1 and x.

Example. Let $f = (1 + x)^8$. Then $\tau(f) \leq 4$.

$$1, x \rightarrow 1 + x \rightarrow (1 + x)^2 \rightarrow (1 + x)^4 \rightarrow (1 + x)^8$$

Kayla Cummings

Pomona College

Definition

For $f \in \mathbb{Z}[x]$, $\tau(f)$ is the minimum number of steps required to build f from 1 and x.

Example. Let $f = (1 + x)^8$. Then $\tau(f) \le 4$.

$$1, x \rightarrow 1 + x \rightarrow (1 + x)^2 \rightarrow (1 + x)^4 \rightarrow (1 + x)^8$$

Shub-Smale τ Conjecture (1993)

If there exists an absolute constant c such that for all $f \in \mathbb{Z}[x]$, the number of integer roots of f is bounded above by $\tau(f)^c$, then $P_{\mathbb{C}} \neq NP_{\mathbb{C}}$.

Definition (Koiran, Portier, Rojas)

An SPS-polynomial g is a polynomial expressible as $\sum_{i=1}^{k} \prod_{j=1}^{m} g_{i,j}$ with nonzero, univariate $g_{i,j}$ having at most t monomial terms for all i, j.

Definition (Koiran, Portier, Rojas)

An SPS-polynomial g is a polynomial expressible as $\sum_{i=1}^{k} \prod_{j=1}^{m} g_{i,j}$ with nonzero, univariate $g_{i,j}$ having at most t monomial terms for all i, j.

Theorem *(Koiran, Portier, Rojas)*

Let f be an SPS-polynomial. If there exists a prime p such that, for all f, the cardinality of the set of distinct p-adic valuations of the integer roots is $(kmt)^{O(1)}$, then the permanent of square matrices cannot be computed in polynomial time.

Kayla Cummings Polynomial Roots and *p*-adic Valuations

Project Goal

Conjecture

Let $f \in \mathbb{Z}[x]$ defined as $f = (x + a)^M (x + b)^N + c$ be a univariate polynomial with *a* and *b* distinct nonzero integers, *c* an integer, and *M* and *N* positive integers. Then *f* has $O(\log_p(M + N))$ distinct *p*-adic valuations of the integer roots.

Background

Definition

Let $f \in \mathbb{Z}[x_1]$ with $f = \sum_k \gamma_k x^k$. Then define the *p*-adic Newton Polygon of *f* to be the convex hull of $(k, \operatorname{ord}_p(\gamma_k))$ for all *k*.

Background

Definition

Let $f \in \mathbb{Z}[x_1]$ with $f = \sum_k \gamma_k x^k$. Then define the *p*-adic Newton Polygon of *f* to be the convex hull of $(k, \operatorname{ord}_p(\gamma_k))$ for all *k*.

Definition

The lower hull of $\operatorname{Newt}_p(f)$ is the set of all edges of $\operatorname{Newt}_p(f)$ whose inner normals have positive *y*-coordinates.

Background

Definition

Let $f \in \mathbb{Z}[x_1]$ with $f = \sum_k \gamma_k x^k$. Then define the *p*-adic Newton Polygon of *f* to be the convex hull of $(k, \operatorname{ord}_p(\gamma_k))$ for all *k*.

Definition

The lower hull of $\operatorname{Newt}_p(f)$ is the set of all edges of $\operatorname{Newt}_p(f)$ whose inner normals have positive *y*-coordinates.

Theorem (Hensel, Dumas, 1903)

Let -m be the slope of the edge of $\operatorname{Newt}_p(f)$ with scaled inner normal (v, 1). Then f has at most v integer roots with valuation m, counting multiplicities.

Kayla Cummings

Theorem *(Saunders)*

Assume $\operatorname{ord}_{\rho}(a) = \operatorname{ord}_{\rho}(b) = 0$ and $\operatorname{ord}_{\rho}(M) > \operatorname{ord}_{\rho}(N) > 0$. Then there are no more than $\operatorname{ord}_{\rho}(N) + 2$ edges in the lower hull of $\operatorname{Newt}_{\rho}(f)$.

Theorem (Saunders)

Assume $\operatorname{ord}_{p}(a) = \operatorname{ord}_{p}(b) = 0$ and $\operatorname{ord}_{p}(M) > \operatorname{ord}_{p}(N) > 0$. Then there are no more than $\operatorname{ord}_{p}(N) + 2$ edges in the lower hull of $\operatorname{Newt}_{p}(f)$.

Intuition

We have ord_p(γ₁) = ord_p(N). Consider the first j such that ord_p(γ_j) = 0 and the y-axis projections of the lower edges: there are at most ord_p(N) edges between (1, ord_p(N)) and (j, 0).

Theorem (Saunders)

Assume $\operatorname{ord}_p(a) = \operatorname{ord}_p(b) = 0$ and $\operatorname{ord}_p(M) > \operatorname{ord}_p(N) > 0$. Then there are no more than $\operatorname{ord}_p(N) + 2$ edges in the lower hull of $\operatorname{Newt}_p(f)$.

Intuition

- We have ord_p(γ₁) = ord_p(N). Consider the first j such that ord_p(γ_j) = 0 and the y-axis projections of the lower edges: there are at most ord_p(N) edges between (1, ord_p(N)) and (j, 0).
- There is at most one edge between $(0, \operatorname{ord}_{\rho}(\gamma_0) \text{ and } (1, \operatorname{ord}_{\rho}(N))$.

Kayla Cummings

Theorem *(Saunders)*

Assume $\operatorname{ord}_p(a) = \operatorname{ord}_p(b) = 0$ and $\operatorname{ord}_p(M) > \operatorname{ord}_p(N) > 0$. Then there are no more than $\operatorname{ord}_p(N) + 2$ edges in the lower hull of $\operatorname{Newt}_p(f)$.

Intuition

- We have ord_p(γ₁) = ord_p(N). Consider the first j such that ord_p(γ_j) = 0 and the y-axis projections of the lower edges: there are at most ord_p(N) edges between (1, ord_p(N)) and (j, 0).
- There is at most one edge between $(0, \operatorname{ord}_{\rho}(\gamma_0) \text{ and } (1, \operatorname{ord}_{\rho}(N))$.
- Suppose $j \neq M + N$. There is at most one edge between (j, 0) and (M + N, 0).

Kayla Cummings

A Concise Case: Example

Kayla Cummings

Pomona College

A Base Polytope: p divides a or b

Theorem (C.)

Let p divide a or b with $\operatorname{ord}_p(a) \ge \operatorname{ord}_p(b)$ and c = 0.

Kayla Cummings

Polynomial Roots and p-adic Valuations

Theorem (C.)

Let p divide a or b with $\operatorname{ord}_p(a) \ge \operatorname{ord}_p(b)$ and c = 0. Then $h : [0, M + N] \to \mathbb{Z}$ describes the lower hull of $\operatorname{Newt}_p(f)$ and is defined by

$$h(x) = \begin{cases} -\operatorname{ord}_p(a)x + (M \cdot \operatorname{ord}_p(a) + N \cdot \operatorname{ord}_p(b)) & \text{if } 0 \le x \le M \\ -\operatorname{ord}_p(b)x + (M + N) \cdot \operatorname{ord}_p(b) & \text{if } M \le x \le M + N \end{cases}$$

Kayla Cummings

Pomona College

Example: Base Polygon and Constant Term

Kayla Cummings

Pomona College

Using the Theorem

Anchoring the Linear Term

If we can guarantee $\operatorname{ord}_{p}(\gamma_{1}) = h(1)$, then $\operatorname{Newt}_{p}(f)$ will have at most 3 edges.

Example: Anchored Linear Term

Figure 3: Newt₃($(x + 5 \cdot 3^2)^{19}(x + 2 \cdot 3)^{5 \cdot 3} - 45^{19}6^{15}$)

Kayla Cummings

Polynomial Roots and p-adic Valuations

Guaranteeing the point (1, h(1))

Let $a = \alpha p^{j}$ and $b = \beta p^{k}$ with $p \not\mid \alpha, p \not\mid \beta$, and $j \ge k$.

Kayla Cummings Polynomial Roots and *p*-adic Valuations

Guaranteeing the point (1, h(1))

Let $a = \alpha p^{j}$ and $b = \beta p^{k}$ with $p \not\mid \alpha, p \not\mid \beta$, and $j \ge k$.

$$\operatorname{ord}_{p}(\gamma_{1}) = h(1) + \operatorname{ord}_{p}(N\alpha p^{j-k} + M\beta)$$

Kayla Cummings Polynomial Roots and *p*-adic Valuations

Guaranteeing the point (1, h(1))

Let $a = \alpha p^{j}$ and $b = \beta p^{k}$ with $p \not\mid \alpha, p \not\mid \beta$, and $j \ge k$.

$$\operatorname{ord}_{\rho}(\gamma_1) = h(1) + \operatorname{ord}_{\rho}(N\alpha p^{j-k} + M\beta)$$

When does $\operatorname{ord}_{p}(N\alpha p^{j-k} + M\beta) = 0$?

Kayla Cummings Polynomial Roots and *p*-adic Valuations

Guaranteeing the point (1, h(1))

Let $a = \alpha p^{j}$ and $b = \beta p^{k}$ with $p \not\mid \alpha, p \not\mid \beta$, and $j \ge k$.

$$\operatorname{ord}_{p}(\gamma_{1}) = h(1) + \operatorname{ord}_{p}(N\alpha p^{j-k} + M\beta)$$

When does
$$\operatorname{ord}_{\rho}(N\alpha p^{j-k} + M\beta) = 0$$
?

•
$$\operatorname{ord}_p(a) > \operatorname{ord}_p(b), p \not\mid M$$

•
$$\operatorname{ord}_p(a) = \operatorname{ord}_p(b), p \mid M, p \nmid N$$

•
$$\operatorname{ord}_p(a) = \operatorname{ord}_p(b), p \nmid M, p \mid N$$

Kayla Cummings

Remaining Cases

Case 1: $\operatorname{ord}_p(a) > \operatorname{ord}_p(b), p \mid M$

Vertices only occur on points whose x-coordinates are powers of p between 1 and M. We can bound the number of edges by $\operatorname{ord}_p(M) + 3$.

Remaining Cases

Case 1: $\operatorname{ord}_p(a) > \operatorname{ord}_p(b), p \mid M$

Vertices only occur on points whose x-coordinates are powers of p between 1 and M. We can bound the number of edges by $\operatorname{ord}_p(M) + 3$.

Case 2: $\operatorname{ord}_p(a) = \operatorname{ord}_p(b)$, $\operatorname{ord}_p(M) > \operatorname{ord}_p(N) > 0$

Vertices only occur on points whose x-coordinates are powers of p between 1 and N. Then Newt_p(f) has a max of $ord_p(N) + 2$ lower edges.

Example: Remaining Case

Kayla Cummings

Pomona College

A Tricky Case: $\operatorname{ord}_p(a) = \operatorname{ord}_p(b), p \not\mid M, p \not\mid N$

Kayla Cummings

Polynomial Roots and p-adic Valuations

Our bound of $O(log_p(M + N))$ is within reach!

Kayla Cummings Polynomial Roots and *p*-adic Valuations

Conclusion

Thank you for listening!

Kayla Cummings Polynomial Roots and *p*-adic Valuations

References

- L. Blum, F. Cucker, M. Shub, S. Smale. Complexity and Real Computation. New York: Springer-Verlag, 1998. Print.
- Gouvêa, Fernando Q. *p-adic Numbers: An Introduction*, 2nd ed. New York: Springer-Verlag, 1997.
- P. Koiran, N. Portier, J. M. Rojas. "Counting Tropically Degenerate Valuations and *p*-adic Approaches to the Hardness of the Permanent," submitted for publication.
- Rojas, J. Maurice. "Arithmetic Multivariate Descartes' Rule," American Journal of Mathematics, vol. 126, no. 1, February 2004, pp. 1-30.
- Weiss, Edwin. Algebraic Number Theory. New York: McGraw-Hill Book Company, Inc., 1963. Print.