
Bounding Components in Real Zero Sets of

Bivariate Pentanomials

Erin Lipman

July, 2016

1 Introduction

The quest to categorize the possible topological types of algebraic curves has
long been of interest to mathematicians. In 1876, Harnack derived O(n2) bounds
on the number of connected components of real algebraic curves of degree n. In
1900, Hilbert proposed his epinomous 16th problem, calling for a categorization
of the possible configurations of branches and cyclic components of algebraic
curves. Over a century later, this problem remains open for polynomials of
degree n ≥ 8.

Our work takes a slightly different approach, appealing to the study of
sparse polynomials, or polynomials with relativly few terms. Instead of study-
ing algebraic curves of fixed degree, we are interested in the real zero sets of
polynomials with a fixed small number of monomial terms. This allows us to
investigate Hilbert-esqe questions for curves of arbitrarily high degree.

Much progress has already been made is this field. A combinatorial method
due to Viro (explained in 1.2), gives a categorization of the real zero sets of
polynomials in n variables with (n + 1) or (n + 2) monomial terms, which can
be used to derive bounds on the number of connected components.

Our investigation pretains to polynomials in n variables with (n+ 3) mono-
mial terms, for which the most natural place to start is 2-variate, 5-nomials
(bivariate pentanomials).

The primary tool we will use in this investigation is an object known as the
A-discriminant variety (described in section 2), denoted ∇A. Informally, given
a family F of polynomials defined by a fixed set of exponent vectors, ∇A is
the subfamily F comprising polynomials having a degenerate root (realized in
complex coefficient space).

The compliment of this object restricted to real coefficient space often con-
sists of many connected components. Polynomials lying in the same connected
component of the compliment (or chamber of ∇A in real coefficient space will
have isotopic real zero sets.

We will see that in the n-variate, (n + 3)-nomial case, there are certain
chambers of the A-discriminant for which Viro’s method can be applied. Thus
by bounding the change in number of connected components of the real zero
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sets of polynomials as we cross ∇A, we can gain information about real zero
sets for polynomials in the remaining chambers.

The primary contribution of this report is proving that given ∇A for a family
F of bivaiate pentanomials of a certain form, that elements of F in adjacent
chambers of ∇A differ in number of connected components by at most one. As
a corollary, we give explicit bounds on the number of compact and non-compact
connected components of such polynomials.

We state this theorem and corrolary formally after a notational definition.

Definition 1.1. Given a polynomial f , the number of total, compact, and non-
compact connected components in the real zero set of f will be denoted Tot(f),
Comp(f), and Non(f) respectivly.

Theorem 1.2. Let F be an bivariate pentanomial family of the form

F = {c1 + c2x+ c3y + c4x
α1yα2 + c5x

β1yβ2 , for fixed αi, βi ∈ Z}

Given f, g ∈ F lying in adjacent chambers of the signed reduced A-discriminant
of F , Non(f) = Non(g) and |Comp(f)− Comp(g)| ≤ 1.

Remark 1.3. Any bivariate pentanomial family can be reduced to a family of
the form

F = {c1 + c2x+ c3y + c4x
α1yα2 + c5x

β1yβ2 , for fixed αi, βi ∈ Q, }

we simply restrict to the case where α1 and βi are integers (theorem 1.2) or
nonnegative integers (corollary 1.4).

Corollary 1.4. If f ∈ F , where F as defined above has αi, βi ≥ 0, Comp(f) ≤ 3
and Tot(f) ≤ 7.

This report proceeds as follows. The remainder of this section lays out
preliminary definitions and gives an overview of Viro’s method and its failing
in the (n + 3)-nomial case. Section 2 gives a detailed exposition of the A-
discriminant variety. Section 3 gives a proof of the main theorem (1.2). Section
4 proves the corralary (1.4) and remarks on possibilities for generalization to
arbitrary bivariate pentanomials.

1.1 Preliminary Background

We begin with some definitions that will enable us to make connections between
the solution sets of n-variate polynomials and certain polygons in Rn.

Definition 1.5. An n-variate (n + k)-nomial is a polynomial of the form

f(x1, . . . , xn) =
n+k∑
i=1

cix
ai for ci 6= 0. We call A = {a1, ..., an+k} ⊂ Zn the

support of f (Supp(f)).
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Definition 1.6. We say that f is an honest n-variate polynomial if its support
does not lie in some affine n− 1 hyperplane.

For example, the polynomial f = 1 + xy + x3y3 is not an honest bivariate
polynomial since it can be realized in only one variable. For the remainder of
this paper, we will assume that all of our n-variate polynomials are honest.

Definition 1.7. Given a finite point set P ⊂ Rn, we define the convex hull,
Conv(P ), to be the minimum convex set X ⊂ Rn such that P ⊂ X.

Definition 1.8. The Newton polygon of f is defined to be

Newt(f) = Conv({ai : ai ∈ Supp(f)}).

Assuming that all coefficients of f are real, the signed Newton polygon of
f (SNewt(f)) is given by assigning a sign to each vertex of Newt(f) such that
the vertex ai is given sign(ci).

1.2 Viro’s Method

The topological types of the real zero sets for sufficiently simple polynomial
equations can be completely categorized using a combinatorial approach called
Viro’s method. The method gives a combinatorial object which is isomorphic
to the positive zero set of a polynomial. For theory underlying this method,
refer to [3].

Remark 1.9. While Viro’s method in its simplest form categorizes only the
positive zero set of a polynomial, it can be extended to apply to the entire real
zero set (see section 4).

We first describe the method in the (n + 1)-nomial case, before discussing
its generalizations to the (n + 2) and (n + 3)-nomial cases. Its failing to apply
to certain polynomials in this final case is our motivation for this investigation.

Definition 1.10. The Viro diagram of an honest n-variate, (n + 1)-nomial,
V iro(f) is given by Conv(M), where M is the set of midpoints of edges of
SNewt(f) whose endpoints have opposite signs.

Example 1.11. Given f = 30− 11x+ 7y, figure 1, shows V iro(f), along with
the positive zero set of the polynomial. We notice that, viewing the hypotenuse
of V iro(f) as lying at infinity, each object is connected and unbounded at one
end.

In general, the Viro diagram of an honest n-variate (n+ 1)-nomial is diffeo-
morphic to the classical n-simplex, which exaplains why we need not consider
choice of triangulation as we will in higher cases.

Theorem 1.12. If f is an honest n-variate, (n+1)-nomial, V iro(f) is isotopic
to the positive zero set of f .
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Figure 1: Viro diagram and positive zero set for polynomial in example 1.11.

Figure 2: Viro diagrams correcponding to each of the triangulations for
SNewt(g) (left) and SNewt(h) (right) from example 1.14

Viro’s method in the (n + 2)-nomial case works similarly, with the caveat
that we must first assign a triangulation to SNewt(f).

Definition 1.13. If f is an honest n-variate (n+2)-nomial, then given any
triangulation Σ, we define

V iroΣ(f) =
⋃
σ∈Σ

Conv(Mσ),

where Mσ is the set of midpoints of those edges of σ whose endpoints have
opposite signs.

Example 1.14. The signed Newton polygons for g = 30 − x + 7y − x2y2 and
h = 30 − x + 7y − y4 each have two possible trianglations. The Viro diagrams
corresponding to each of these is shown in figure 2.

Theorem 1.15. If f is an honest n-variate, (n + 2)-nomial, There exists a
trianglation Σ of SNewt(f) such that V iroΣ(f) is isotopic to the positive zero
set of f .

In fact, given any such polynomial, we can use the A-discriminant to deter-
mine exactly which triangulation to use. We will not, however, devote any more
attention to determining choice of triangulation since it is not relevant to the
project at hand.

Unfortunately, theorem 4.2 does not apply in general to the (n+ 3)-nomial
case. However, it does extend to the (n+3) case if we require that f correspond
to a point in one of a certain subset of the chambers of the A-discriminant
variety corresponding to f . An exposition of this enormously useful object will
be the focus of the following section.
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2 The A-Discriminant Variety

The A-discriminent is a generalization of the more familiar quadratic discrim-
inant. We recall from high school algebra that a polynomial in the univariate
trinomial family

F = {ax2 + bx+ c : a, b, c ∈ C∗}

has a degenerate root exactly at the roots of the polynomial

∆(0,1,2)(a, b, c) = b2 − 4ac.

We will use this familiar example to demonstate the resultants method for
computing the A-discriminant polynomial for an n-variate, (n+ k)-nomial.

We begin with the definition of the A-discriminant variety ∇A. Simply
stated, given family F with support A, ∇A represents the set of polynomials in
F having a nonzero degenerate root.

Definition 2.1. The A-discriminant variety of an n-variate (n+ k)-nomial
with support A = {a1, ..., an+k} ⊂ Zn is defined as the Zariski closure of:

∇A = {(c1, ...cn+k) ∈ P (C)n+k−1 :

∃ζ ∈ (C∗)n with f(ζ) = 0 and ∂f
∂xi

(ζ) = 0 for all i ∈ {1, ..., n}}.

Theorem 2.2. If f, g ∈ F correspond to points in the same connected compo-
nent of the compliment of ∇A in real coefficient space, then the real zero sets of
f amd g are isotopic.

2.1 The Resultants Method

Perhaps the most direct way to compute ∇A would be to find a polynomial ∆A
whose solution set is exactly ∇A. To do this, we will introduce the resultants
method for determining whether or not two polynomials have a common root.

Definition 2.3. Given polynomials f(x) = a0 + a1x + · · · anxn and g(x) =
b0 + b1x + · · · bmxm, with ai, bi ∈ C and an, bm 6= 0, the Sylvester matrix of
f and g is defined to be the following (n+m)× (n+m) matrix:

Sylx(f, g) =



a0 a1 · · · am 0 0

0
. . .

. . . 0
0 0 a0 a1 · · · am
b0 b1 · · · bn 0 0

0
. . .

. . . 0
0 0 b0 b1 · · · bn


.
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A classical theorem describes how we can use the Sylvester matrix to com-
pute ∆A.

Theorem 2.4. If f(x) = a0+a1x+· · · anxn and g(x) = b0+b1x+· · · bmxm, with
ai, bi ∈ C and an, bm 6= 0, then det(Sylx(f, g)) = 0 if and only if f(ζ) = g(ζ) = 0
for some ζ ∈ C∗.

Thus if F is a univariate polynomial of degree d with support A, ∆A is given
by the determinant of the (2d− 1)× (2d− 1) matrix Sylx(f, f ′).

Example 2.5. In the case of our quadratic example, we derive the familiar
formula, realizing that we may scale ∆A by the nonzero constant −a.

∆A = det

c b a
b 2a 0
0 b 2a

 = −a(b2 − 4ac).

This method can also be extended into a method for computing the A-
discriminant polynomial for multivariate families.

While the resultants method is practical for this quadratic example, the size
and complexity of computing a single Sylvester discriminant grows in the square
of the degree of F . Furthermore, ∆A for even a sparse polynomial often has an
unmanagable number of terms.

We would like an alternate representation for ∇A that is both easy to com-
pute and practical to use. We will find such a representation in the Horn-
Kapranov uniformization.

2.2 Horn-Kapranov Uniformization

For a family F with support A = {a1, ..., an+k}, we define an (n+ 1)× (n+ k)
matrix

Â =

(
1 · · · 1
a1 · · · an+k

)
and a corresponding (n+ k)× (k − 1) matrix B whose columns form a basis of
the right null of Â:

B =

 b1
...

bn+k

 .

Theorem 2.6. ∇A can be parametrized in P (C)n+k−1 as the Zariski closure of
the following:

ϕ(∇A) = {(b1 · λ)ta1 : · · · : (bn+k · λ)tan+k |λ ∈ P (C)k−2}.
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We will denote the ith component of this parametriztion as γi.

Example 2.7. Consider the family

F = c1 + c2x+ c3y + c4x
4y + c5xy

4.

Using

ÂB =

1 1 1 1 1
0 1 0 4 1
0 0 1 1 4




4 0
−4 3
−1 −3
1 −1
0 1

 = 0,

we have

ϕ(∇A) = {(4λ1t
(0,0) : (−4λ1+3λ2)t(1,0) : (−λ1−3λ2)t(0,1) : (λ1−λ2)t(4,1) : λ2t

(1,4)) : λ ∈ P (C)}

While ϕ(∇A) is easy to compute, its dimension depends on the number of
monomial terms in F . In order to visualize ϕ(∇A) in a lower dimension, we will
take advantage of homogenaties to reduce F to a subfamily with coefficient space
of dimension k− 1. We will also restrict our attention to the real component of
the coefficient space.

We observe that if ζ ∈ (C∗)n, f(x1, . . . , xn)|ζ = 0 if and only if κf(α1x1, . . . , αnxn)|ζ =
0.. Thus we may study the behavior of a subfamily of polynomials that will rep-
resent equivalence classes of F .

Keeping F as in example 2.7, consider the subfamily F ′ = 1+x+y+ax4y+
bxy4, which is the image of the map

[·] : F → F ′ by [f(x, y)] =
1

c1
f

(
c1
c2
x,
c1
c3
y

)
,

which in turn induces a map on the coefficient vectors

[·]∗ : P (C)5 → (C∗)2 by [(c1 : c2 : c3 : c4 : c5)]∗ =

(
c41c4
c42c3

,
c41c5
c2c43

)
.

In order to utilize the reduced A-discriminant, we will find it useful to con-
sider the amoeba of its contour, meaning that we will plot the log-norm of its
real component.

The reduced A-discriminant for our example with respect to the change of
variables [·] is the following:

ϕ(∇A) =

(
log

∣∣∣∣γ4
1γ4

γ4
2γ3

∣∣∣∣ , log ∣∣∣∣γ4
1γ5

γ2γ4
3

∣∣∣∣) ={(
log
∣∣∣ (4λ1)4(λ1−λ2)

(−4λ1+3λ2)4(−λ1−3λ2)

∣∣∣ , log ∣∣∣ (4λ1)4(λ2)
(−4λ1+3λ2)(−λ1−3λ2)4

∣∣∣) : λ ∈ P (C)
}
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Figure 3: Reduced A-discriminant amoeba for F (right image zoomed in to
show cusps). In addition to the 3 clearly visible places where the discriminant
’blows up’, the discriminant also extends infinitely along the negative x and
negative y axes.

2.3 Unfolding the Reduced A-Discriminant

We would like to be able to apply theorem 2.2 to ϕ(∇A), however in taking the
log norm, ϕ(∇A) is no longer homeomorphic to ∇A. To preserve the bijection,
we instead take the log norm of each quadrant of the coefficient space separately.

Definition 2.8. Let F be a family of n-variate, (n+ k)-nomials.
For (σ1, . . . , σk−1) ∈ {±1}k−1, then we define

ϕ(∇A)(σ1,...,σk−1) = ϕ(∇A)|λ(σ1,...σk−1),

where

λ(σ1,...σk−1) = {λ ∈ P (R)k−1 :
ϕ̂i(λ)

|ϕ̂i(λ)|
= σi for i ∈ {1, . . . , k − 1}.,

and ϕ̂ is the map identical to ϕ except that we refrain from taking the log
norm.

We observe that ϕ is undefined exactly where bi · λ = 0 for some row bi
of B. Thus in the (n + 3)-nomial case, it is undefined for at most (n + 3)
distinct values of λ ∈ P ((R))- near these values, the function goes off to infinity
in some direction. Thus ϕ is the union of ≤ 5 (smooth) unbounded connected
components. Since in between these values, ϕ is continuous (and nonzero),
each of its connected components is contained completely in ϕ(∇A)(σ1,...,σk−1)

for some σ1, . . . , σk−1.
It is often helpful to visualize P ((R)) as the upper half circle (with the 2

endpoints identified).
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Figure 4: B matrix and annotated domain for example 2.9

Example 2.9. Continuing again our example

F = 1 + x+ y + ax4y + bxy4,

figure 4 shows the domain of ϕ. The marked points represent the values of λ for
which ϕ ’blows up’, and the ordered pairs of signs denote which quadrant of the
reduced ϕ contains the image of this portion of the domain.

Figure 5 shows the signed reduced A-discriminant for mathcalF .

ϕ(−,+) ϕ(−,+)

ϕ(−,−) ϕ(+,−)

Figure 5: The signed reduced A-discriminant corresponding to example 2.9.

Having established in detail the machinary needed to work with the A-discriminant,
we proceed to prove the main theorem regarding change in number of comnected
compoents of a polynomial as we cross between chambers.
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3 Proof of Main Theorem

The proof of the theorem is intuitive and the following section mainly amounts
to an untangling of subtleties - the outline of the argument is as follows.

Consider a family F of the form described in theorem 1.2 (main theorem).

1. Given a polynomial f on the boundary between two chambers of the A-
discriminant for F , there exists constant ε such that f + ε and f − ε lie in
opposite chambers.

2. We can ensure that f has exactly one degenerate root and that at this root,
the surface defined by f(x, y) attains either a local extremum or a saddle
point.

3. Assuming that ε is sufficiently small, the cross sections of the surface
f(x, y) at f(x, y) = ±ε differ in number of (compact) connected compo-
nents by at most 1.

Definition 3.1. We define the set of critical points of surface f(x, y) to be

W = {(x, y) ∈ R2 : ∂f(x,y)
∂x = ∂f(x,y)

∂y = 0}. Define the z-coordinate projection

πz : W → R to be πz(x, y) = f(x, y). We refer to the image πz(W ) as the set
of critical values of f .

Lemma 3.2. A surface f(x, y), where f(x, y) = 0 is a bivariate polynomail,
has finitly many critical values, ie πz(W ) is finite.

Proof. By Sard’s theorem, we have that πx(W ) has Lebesgue measure zero in R.
We now appeal to the theory of semi-algebraic sets (a superset of algebraic sets).
The projection of a semialgebraic set is semialgebraic, and a semialgebraic set is
the finite union of points and open intervals. Thus a measure zero semi-algebraic
set is a finite point set.

For a surface f(x, y), let δf(x,y) = min{|w| : w ∈ πz(W )}.
Remark 3.3. Since topological type is constant within a chamber of the signed
A-discriminant, it suffices to show that given any pair of adjacent chambers,
the result holds for some pair of polynomials on opposite sides.

3.1 Generic properties of polynomials on ϕ(∇A)

Consider the surface defined by f(x, y) = 1 + x + y + axα1yα2 + bxβ1yβ2 . Ac-
cording to the definition of πz(W ), (x, y) is a degenerate root of f exactly when
(x, y, f(x, y) = 0) is a critical point. Henceforth we will refer to degenerate roots
as critical roots to premptivly avoid confusion with degenerate critical points.

The critical points of an algebraic surface in R3 come in several forms. A
nondegenerate critical point is either a local extremum (maximum or minimum)
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or a saddle point. Critical points can be categorized by studying the eigenvalues
of the Hessian matrix.

Definition 3.4. Given a c2 function f : Rn → R, the Hessian matrix of f is
defined as follows:

H(f) =


∂2f
∂x2

1
· · · ∂2f

∂x1∂xn
...

. . .
...

∂2f
∂xn∂x1

· · · ∂2f
∂x2
n



Definition 3.5. A critical point x ∈ Rn is degenerate if

det(H(f)|x) = 0,

ie the Hessian is neither positive semidefinite nor negative semidefinite.

Before discussing generic properties, we define this notion of a generic prop-
erty.

Definition 3.6. We say a property P is generic in Rn if it holds on the
compliment of an algebraic set - ie there exists an honest n-variate polynomial
f such that P holds exactly when f = 0.

By showing that polynomials on the A-discriminant generically have non-
degenerate critical roots, we will be able to assume without loss of generality
that a critical root of such a polynomial is either a local extremum or a saddle
point.

Theorem 3.7. Given family

F = {1 + x+ y + axα1yα2 + bxβ1yβ2},

where αi and βi are fixed integers, a generic point on ϕ(∇A) has exactly one
critical root. Furthermore, this critical root is a nondegenerate critical point.

Proof. F has Â matrix

Â =

1 1 1 1 1
0 1 0 α1 β1

0 0 1 α2 β2

 ,

whose null space is given by
1− α 1− β
α1 β1

α2 β2

−1 0
0 −1

 ,
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where α = α1 + α2 and β = β1 + β2,
and Hessian matrix

H(f) =

(
aα2

1x
α1−2yα2 + bβ2

1x
β1−2yβ2 aα1α2x

α1−1yα2−1 + bβ1β2x
β1−1yβ2−1

aα1α2x
α1−1yα2−1 + bβ1β2x

β1−1yβ2−1 aα2
2x
α1yα2−2 + bβ2

2x
β1yβ2−2

)
.

Recalling our definition of the A-discriminant, a point on ϕ(∇A) which is
the image of λ ∈ P (R) satisfies the following equation:

c ∗


1
x
y

axα1yα2

bxβ1yβ2

 = λ1


1− α
α1

α2

−1
0

+ λ2


1− β
β1

β2

0
−1

 ,

where c is a real scaler accounting for the fact that λ lies in projective space,
(x, y) is a critical root, and a, b are real coefficients.

Since P (R) can be represented as the set of lines through the origin in R2,
we can identify λ by the ratio λ2

λ1
. We begin by fixing λ2 = rλ1, eg λ1 = 1,

λ2 = r, and following though a series of implications.

→ c = 1− α+ r(1− β) depends linearly on r.

→ x = c−1(α1 + rβ1), and similarly y, is determined by r.

→ a = c−1( −1
xα1 y

α
2

), and similarly b, is also determined by r.

Both portions of the theorem follow immediately from these relations.
Since (x, y) is determined by λ, a polynomial has multiple critical roots only

if it corresponds to a self intersection of ϕ. Since all intersections of ϕ are
transverse (see [5]), a generic point on ϕ has only one critical root.

Furthermore, assuming that λ · bi = 0 for all rows bi (otherwise ϕ is not
defined), det(H(f)|x,y) is a univariate polynomial equation in variable r. Thus,
generically a critical root is nondegenerate.

3.2 The Proof

Let F = {c1+c2x+c3y+c4x
α1yα2 +c5x

β1yβ2 : ci ∈ R} and suppose ϕ(∇A) ∈ R2

is the reduction of ∇A to the subfamily F ′ = {1 + x+ y + axα1yα2 + bxβ1yβ2 :
a, b ∈ R}. by the followinf map:

[·] : F → F ′ by [f(x, y)] =
1

c1
f(
c1
c2
x,
c1
c3
y).
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Definition 3.8. If quadrant ϕ(∇A)σ1,σ2 of the unfolded reducedA-discriminant
has chambers {V1, · · ·Vn}, then chambers Vi and Vj are adjacent if V i ∩ V j
contains the injective image of an interval. We will call V i ∩ V j the common
boundary of Vi and Vj .

In order to show that the theorem hold for all f, g : f ∈ Vi, g ∈ Vj, we begin
by considering a polynomial

f = 1 + x+ y + σ1e
a0xα1yα2 + σ2e

b0xβ1yβ2 (2)

corresponding to a point p=(a0, b0) on ϕ(∇A)σ1,σ2
. We can assume without

loss of generality that f has exactly one critical root and that ∂ϕ2

∂ϕ1
|p 6= β−1

α−1

(the second fact is clearly true since the second derivative of ϕ are generically
nonzero).

We consider the sum of f with the constant monomial ε, where we assume
|ε|< min(1, δf ). Using our change of variables [·],

[f + ε] = 1 + x+ y + σ1e
a0(1 + ε)α−1xα1yα2 + σ2e

b0(1 + ε)β−1xβ1yβ2 . (3)

Then the parametric curve of points corresponding to [f + ε] is

C = (log(ea0(1 + ε)α−1), log(eb0(1 + ε)β−1)), (4)

with constant slope ∂C2

∂C1
= β−1

α−1 .
Thus C crosses ϕ transversely at p, and for ε of sufficiently small absolute

value, we obtain [f + ε] ∈ Vi, [f − ε] ∈ Vj.
It remains only to examine the change in number of connected components

as the cross section for f(x, y) changes from f + ε = 0 to f − ε = 0, assuming f
has a single nondgenerate critical root and the surface f(x, y)|ε−ε has no other
critical points.

It is a result of classical Morse theory that the topological type of the cross
section of a surface changes only at critical values (for more on CMT see e.g.
[2]. Thus the cross sections of the restriction of f(x, y) to the domain with an
open neighborhood around the critical root are all isotopic.

An analysis of directional second derivatives illuminates the behavior around
the critical root. The behavior around a nondegenerate critical point is illustrated
in figure 3.2.

If the root is a local extremum, varying the cross section in one direction
causes the genesis of a compact component, while varying it in the other direction
does the reverse. Thus around a local extremum, Non(f) remains constant and
Comp(f) changes by exactly 1.

At a saddle point, taking cross-scetions ε above and below the critical point lo-
cally give 2 distinct components that change their relative configuration as shown
in 3.2. Non(f) stays constant and Comp(f) changes by 0 or 1 depending on
whether the two components are globally part of the same connected component
of the curve.

13



Figure 6: Change in local isotopy type of cross sections of f(x, y) as we cross a
critical value.

4 Viro’s Method and Bounds on Connected Com-
ponents

Figure 7: Viro diagrams for F(−,−) using 3 different triagulations

4.1 Bounds on Components for polynomials in Outer Cham-
bers

We recall from 1.2 that Viro’s method applies to (n + 3)-nomials in certain
chambers of the A-discriminant. We now make this more precise.

Definition 4.1. In the setting of (n+ 3)-nomials, an outer chamber is a con-
nected components of ϕ having unbounded area. A non-outer chamber is an
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inner chamber.

Theorem 4.2. If f is an honest n-variate, (n + 3)-nomial lying in an outer
chamber of the corresponding A-discriminant variety, there exists a trianglation
Σ of SNewt(f) such that V iroΣ(f) is isotopic to the positive zero set of f .

Figure 8: Classical and expanded signed Newton Polygon for F .

So to bound the number of components of real zero sets of certain families of
bivariate pentanomials, we first bound the number of components for polynomials
in the outer chambers, and the bound the ’depth’ of an arbitrary chamber.

We expand slightly on the version of Viro’s method described in section 1.2
for the case where the exponents in our polynomial are positive. Instead of simply
using the signed Newton polygon to characterize just the positive zero set, we
reflect SNewt(f) across both the x and y axes, flipping the signs acordingly
based on the powers of x and y. We then assign a triagulation to the SNewt,
and reflect this triangulation to the additional quadrants, constructing the Viro
diagram as before. In this way we characterize the entire real zero set.

Figure 8 shows the classical and extended signed Newton polygons for

F(−.−) = {1 + x+ y − |a|x4y − |b|xy4}.

Figure 7 gives the Viro diagrams corresponding to F(−,−) under three distinct
triangulations. By symmetry, these are comprehensive. From this we see that
each polynomial in the outer chamber of ϕ(−,−) has three, unbounded connected
components. We also note that the number of unbounded connected components
does not depend on choice of triangulation, but rather on the number of sign
alternations on the outer boundary of the extended SNewt.

The shape of the (extended) SNewt depends on the support of F , where as
before we fix the first three support vectors to be ((0, 0), (1, 0), (0, 1)), with the
remaining exponents being positive integers. Figure 9 illustrates each of the
five fundamentally different shapes for the Newton polygon and the maximum
number of components for a corresponding Viro diagram. The blue vertices are
those that can be designated either positive of negative.

We summarize this figure in the following lemma.
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(a)
max Non: 5
max Comp: 0
sample poly:
f = 1+x+y+ax5y8+bx8y5

(b)
max Non: 3
max Comp: 0
sample poly:
f = 1+x+y+ax5y5+bx8y8

(c)
max Non: 2
max Comp: 1
sample poly:
f = 1 + x+ y + ax5 + by8

(d)
max Non: 3
max Comp: 0
sample poly:
f = 1 + x+ y + ax5 + bx8y8

(e)
max Non: 1
max Comp: 0
sample poly:
f = 1 + x+ y + ax5 + bx8

Figure 9: Maximum components by shape of Newton Polygon

Lemma 4.3. Given a polynomial f ∈ {1+x+y+axα1yα2 + bxβ1yβ2}, for fixed
αi, βi ∈ Z≥0,

Non(f) ≤ 5, Comp(f) ≤ 1, and Tot(f) ≤ 5.

4.2 Proof of Corollary

By the depth of a chamber Vi, we mean the minimum length of a path Vouter, . . . , Vi,
where Vouter ranges over the outer chambers and sucsessive chambers are re-
quired to be adjacent. E.g. an outer chamber has depth 1. We now prove
corollary 1.4.

Consider again family F as in lemma 4.3. Then we have:

ϕ̂ =

(
γα−1

1 γ4

γα1
2 γα2

3

,
γβ−1

1 γ5

γβ1

2 γβ2

3

)
,
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where γi are linear form on λ ∈ P (R).

Figure 10: Domain for F with some arcs marked with quadrant of their image
in signed ϕ. ϕ is with respect to B as above.

When γ4 = 0, ϕ is undefined. Also, since γ4 has multiplicity 1 in ϕ̂1, this
quantity changes sign to either side of the value of λ associated with γ4 = 0.
Thus the portions of the domain on either side of γ4 = 0 lie in distinct quadrants
of the signed A-discriminant. The same reasoning applies to γ5 with regards to
ϕ̂2.

If we verify that the zeros for γ4 and γ5 are adjacent in the domain, we
ensure that at least 3 quadrants of signed ϕ are non-empty. This would also
imply that if a given quadrant contains the images of exactly 3 arcs, then these
arcs are adjacent. Using the same B matrix as in section 3, this is indeed the
case. Figure 10 clarifies this notion.

Figure 11: Extremal configuration of arcs in quadrant of ϕ. Chambers are
labelled with depth.

Having established that a given quadrant contains at most three arcs, it
is straightforward to charactarize the type of extremal example that maximize
chamber depth. To do this, we recall several following results from [5]:

1. The reduced A discriminant for an n variate (n + 3)-nomial has at most
2 cusps. We partition each arc into sub-arcs at the cusps. We then have,
in the extremal case, 5 sub-arcs.

2. A subarc has no points of self-intersection.

3. Adjacent sub-arcs cannot intersect.
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These 3 facts bound the number of intersections in the extremal case to at
most 6. Figure 11 illustrates the general form of a chamber containing 3 arcs
and 5 sub-arcs. From this it is combinatorially evident that the depth of an
arbitrary chamber does not exceed 3. It is easy to check that the non-extremal
cases do not affect this bound.

Combined with the lemma from 4.1, this gives us the corollary.

4.3 Some Final Remarks

1. The author suspects that that the processes used to prove the theorem and
corollary, if not the results themselves, could with minimal modification be
applied to arbitrary families of bivariate pentanomials. In particular, an
arbitrary family of bivariate pentanomials is equivilant to a family of the
form

F = {1 + xκ1 + yκ2 + axα1yα2 + bxβ1yβ2}.
for some αi, βi, γi ∈ Z.

2. We are not certain whether our bound on the number of compact (or total)
components is sharp. Finding extremal examples with 2 or 3 compact com-
ponents would be a worthwhile pursuit. The previous subsection’s analysis
of sign changes across the domain provides some insight into where to
look.
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