Bounding Components of Real Zero Sets of Bivariate Pentanomials

Erin Lipman, Haverford College

TAMU REU Mini-Conference - July 19, 2016

f is an n-variate (n + k)-nomial if $f \in \mathbb{C}[x_1, ..., x_n]$ is of the form $f = \sum_{i=1}^{n+k} c_i x^{a_i}$ for $c_i \neq 0$. We call $A = \{a_1, ..., a_{n+k}\} \subset \mathbb{Z}^n$ the support of f.

Definition

The A-discriminant variety of an n-variate (n + k)-nomial with support $A = \{a_1, ..., a_{n+k}\} \subset \mathbb{Z}^n$ is defined as the closure of:

$$abla_A = (c_1, ... c_{n+k}) \in \mathcal{P}^{n+k-1}_{\mathbb{C}}$$
:

$$\exists \zeta \in (\mathbb{C}^n)^*$$
 with $f(\zeta) = 0, rac{\partial f}{\partial x_i}(\zeta) = 0$ for all $i \in \{1,...,n\}$

Parametrizing the *A*-discriminant variety

• How do we efficiently compute the A-discriminant variety?

Parametrizing the *A*-discriminant variety

- How do we efficiently compute the A-discriminant variety?
- For family \mathcal{F} with support $A = \{a_1, ..., a_{n+k}\}$, we define an $(n+1) \times (n+k)$ matrix

$$\hat{A} = \begin{pmatrix} 1 & \cdots & 1 \\ a_1 & \cdots & a_{n+k} \end{pmatrix}$$

Parametrizing the A-discriminant variety

- How do we efficiently compute the A-discriminant variety?
- For family \mathcal{F} with support $A = \{a_1, ..., a_{n+k}\}$, we define an $(n+1) \times (n+k)$ matrix

$$\hat{A} = egin{pmatrix} 1 & \cdots & 1 \ a_1 & \cdots & a_{n+k} \end{pmatrix}$$

Define corresponding (n + k) × (k − 1) matrix B whose columns form a basis of the right null of Â:

$$B = \begin{pmatrix} b_1 \\ \vdots \\ b_{n+k} \end{pmatrix}$$

Horn Kapranov Uniformization

Horn Kapranov Uniformization

Theorem

For family \mathcal{F} with \hat{A} and B defined as on previous slide, ∇_A can be parametrized in $P(\mathbb{C})^{n+k-1}$ as the closure of the following:

$$\varphi(\nabla_A) = \{(b_1 \cdot \lambda)t^{a_1} : \cdots : (b_{n+k} \cdot \lambda)t^{a_{n+k}} \mid \lambda \in P(\mathbb{C})^{k-2}\}$$

Horn Kapranov Uniformization

Theorem

For family \mathcal{F} with \hat{A} and B defined as on previous slide, ∇_A can be parametrized in $P(\mathbb{C})^{n+k-1}$ as the closure of the following:

$$\varphi(\nabla_A) = \{(b_1 \cdot \lambda)t^{a_1} : \cdots : (b_{n+k} \cdot \lambda)t^{a_{n+k}} \mid \lambda \in P(\mathbb{C})^{k-2}\}$$

Also we can reduce φ to \mathbb{R}^{k-1} as follows:

$$\overline{\varphi}(
abla_{\mathcal{A}}) = \{B^{\mathcal{T}} log | B\lambda | \mid \lambda \in P(\mathbb{C})^{k-2}\}.$$

note: $\overline{\varphi}(\nabla_A)$ also induces a map from \mathcal{F} into \mathbb{R}^{k-1} . Varying the coefficients of a polynomial varies the image of the polynomial under this map.

If $\overline{\varphi}(\nabla_{\mathcal{A}})$ denotes the reduced \mathcal{A} -discriminant variety, then a chamber of $\overline{\varphi}(\nabla_{\mathcal{A}})$ is a connected component of the complement of $\overline{\varphi}(\nabla_{\mathcal{A}})$ in \mathbb{R}^{k-1}

If $\overline{\varphi}(\nabla_{\mathcal{A}})$ denotes the reduced \mathcal{A} -discriminant variety, then a chamber of $\overline{\varphi}(\nabla_{\mathcal{A}})$ is a connected component of the complement of $\overline{\varphi}(\nabla_{\mathcal{A}})$ in \mathbb{R}^{k-1}

Fact

If $f, g \in \mathcal{F}$ correspond to points in the same chamber of $\overline{\varphi}(\nabla_{\mathcal{A}})$, then their real zero sets are isotopic.

In the setting of bivariate pentanomials, a chamber of $\overline{\varphi}(\nabla_A)$ is an outer chamber if its area is infinite and an inner chamber if its area is finite.

In the setting of bivariate pentanomials, a chamber of $\overline{\varphi}(\nabla_A)$ is an outer chamber if its area is infinite and an inner chamber if its area is finite.

Fact

The real zero sets of polynomials in the outer chambers can be completely characterized combinatorially using Viro's method.

 $\mathcal{F} = \{1 + x + y + ax^4y + bxy^4\}$

・日・ ・ ヨ・・

Figure: Reduced \mathcal{A} -discriminant amoeba for \mathcal{F}

0.8 0.6 0.4 0.2 -0.4 -0.2 -0.2 -0.4 -0.2 -0.4 -0.2

Figure: Reduced \mathcal{A} -discriminant amoeba for \mathcal{F}

Figure: Quadrant 4 (a, b < 0) of unfolded *A*-discriminant amoeba

$$\mathcal{F}_{(-,-)} = \{1 + x + y - |a|x^4y - |b|xy^4\}$$

æ

$$\mathcal{F}_{(-,-)} = \{1 + x + y - |a|x^4y - |b|xy^4\}$$

BLACK = '+', RED = '-'

Figure: Signed Newton polygon for $\mathcal{F}_{(-,-)}$

$$\mathcal{F}_{(-,-)} = \{1 + x + y - |a|x^4y - |b|xy^4\}$$

 $\mathsf{BLACK} = '+', \mathsf{RED} = '-'$

Figure: Signed Newton polygon for $\mathcal{F}_{(-,-)}$

Figure: Expanded signed Newton polygon for $\mathcal{F}_{(-,-)}$

・ロト ・四ト ・ヨト ・ヨト

Viro diagrafor $\mathcal{F}_{(-,-)}$ based on various triangulations

We can use Viro diagrams to completely categorize the topological types of polynomials in the outer chambers.

What about the inner chambers?

Figure: Quadrant 4 (a, b < 0) of unfolded *A*-discriminant amoeba

Let \mathcal{F} be a family of bivariate pentanomials of the following form (where $\alpha_i, \beta_i \in \mathbb{Z}$ are fixed):

$$\mathcal{F} = 1 + x + y + ax^{\alpha_1}y^{\alpha_2} + bx^{\beta_1}y^{\beta_2}$$

Theorem

Given $f, g \in \mathcal{F}$ lying in adjacent chambers of the reduced signed *A*-discriminant amoeba of \mathcal{F} , Non(f) = Non(g) and $|Comp(f) - Comp(g)| \le 1$.

* Comp(f) (resp. Non(f)) denotes the number of compact (resp. non-compact) connected components in the real zero set of f

白 ト く ヨ ト く

Changes in zero set crossing A-discriminant

Local Extremum

Outline of Proof

Consider family

$$\mathcal{F} = 1 + x + y + ax^{\alpha_1}y^{\alpha_2} + bx^{\beta_1}y^{\beta_2}$$

æ

⊡ ► < ≣

Consider family

$$\mathcal{F} = 1 + x + y + ax^{\alpha_1}y^{\alpha_2} + bx^{\beta_1}y^{\beta_2}$$

Given a polynomial f on the boundary between two chambers of the A-discriminant for F, there exists constant ε such that f + ε and f - ε lie in opposite chambers.

Consider family

$$\mathcal{F} = 1 + x + y + ax^{\alpha_1}y^{\alpha_2} + bx^{\beta_1}y^{\beta_2}$$

- Given a polynomial f on the boundary between two chambers of the A-discriminant for F, there exists constant ε such that f + ε and f ε lie in opposite chambers.
- We can ensure that f has exactly one degenerate root and that at that root, the surface defined by f(x, y) attains either a local extremum or a saddle point.

Consider family

$$\mathcal{F} = 1 + x + y + ax^{\alpha_1}y^{\alpha_2} + bx^{\beta_1}y^{\beta_2}$$

- Given a polynomial f on the boundary between two chambers of the A-discriminant for F, there exists constant ε such that f + ε and f ε lie in opposite chambers.
- We can ensure that f has exactly one degenerate root and that at that root, the surface defined by f(x, y) attains either a local extremum or a saddle point.
- Saming that e is sufficiently small, the cross sections of the surface f(x, y) at f(x, y) = ±e differ in number of (compact) connected components by at most 1.

Another look at the signed reduced A-discriminant

Signed reduced \mathcal{A} -discriminant for

 $\mathcal{F} = \{1 + x + y + ax^4y + bxy^4\}$

Properties of the signed reduced A-discriminant:

Properties of the signed reduced A-discriminant:

Undefined at λ ∈ P^{k-1} for which λ ⋅ b_i = 0 for some row b_i of the B matrix - here φ 'blows up' to infinity.

Properties of the signed reduced A-discriminant:

- Undefined at λ ∈ P^{k-1} for which λ ⋅ b_i = 0 for some row b_i of the B matrix here φ 'blows up' to infinity.
- For a bivariate pentanomial, we have (at most) 5 connected components partitioned between 4 quadrants.

Another look at the signed reduced A-discriminant

Lemma

At most 3 connected components of the reduced signed \mathcal{A} -discriminant may lie in any given quadrant

Another look at the signed reduced A-discriminant

Lemma

At most 3 connected components of the reduced signed \mathcal{A} -discriminant may lie in any given quadrant

Lemma

The maximum 'depth' of a chamber in the signed reduced A-discriminant is 3.

In the case with 3 components in a single quadrant, and 2 cusps (the maximum), the configuration of curves will look something like the following:

Theorem

Given a bivariate polynomial f in a family of the form

$$\mathcal{F} = \{1 + x + y + ax^{\alpha_1}y^{\alpha_2} + bx^{\beta_1}y^{\beta_2} : a_i, b_i \in \mathbb{Z}_{\geq 0}\},$$
$$Comp(f) \leq 3$$
$$Tot(f) \leq 7.$$

→ ∢ Ξ

Remark

We are unsure whether the bound $Comp(f) \le 3$ is sharp - finding examples with multiple compact connected components would be a relevent pursuit.

Remark

It is likely that with some working out of subtleties, our approach could give similar bounds for arbitary families of bivariate pentanomials.

References

Israel M. Gelfand, Mikhail M. Kapranov, and Andrei V. Zelevinsky. Discriminants, Resultants, and Multidimensional Determinants.

Springer, New York, 1994.

- Morris W. Hirsch. Differential Topology. Springer, New York, 1997.
- Ilia Itenberg, Grigory Mikhalkin, and Eugenii Shustin. Tropical Algebraic Geometry. Birkhäuser Verlag AG, Berlin, 2009.
- Daniel Perrucci.

Some bounds for the number of components of real zero sets of sparse polynomials.

Discrete and Computational Geometry, 2005.

Korben Allen Rusek.

A-discriminant varieties and amoebae. PhD thesis, Texas AM University, 2013.