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-
Background

Definition

Fo(4)= {(i 3) ra,b,c,d € Z,ad — bc =1,c =0 mod 4}

Definition

The Eisenstein series of weight & for each of the cusps of [o(4) are
modular forms defined as:
wik G(F2)*

°© E(z)=e4 Z(2c,d):1,c>0 m-
(et
® Eo(2) = 2 (u2v)=1,050 (ariv)i72
_=mik G(I52)*
° E%(Z) =€ 4 Z(2c,d):1,d>0 W-
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-
Project Goal

Project Goal

| wish to determine the location of the zeroes of the Eisenstein series
Eoo of F0(4)
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Fundamental Domains

Samantha Moore (UNCO)

Zeroes of Eisenstein Series

July 18, 2016

4 /21




|
Zeroes of [o(4)

For k sufficiently large, all but at most O(\/k log k) + 4 zeroes of

Exo(2, k) lie on the lines x = —3 of Fo and x = 5 of Fi.
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Proof Overview

o Show that e Eo(—3 + iy, k) is a real valued function

@ Find a real valued trigonometric approximation of e 2 Eo(—% + iy, k),

. mik
which we denote as e 4 My

@ Bound the error of this approximation for large k and y < Ch;/gik,

where ¢ < 1 is a constant
@ Use the Intermediate Value Theorem to determine zeroes of My

e By our bounds on the error of My in relation to Eo(—31 + iy, k), we
prove that each of the zeroes of My correspond to a zero of
Eo(—3 + iy, k) and thus a zero of Ex(z, k).
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Show that e Eo(—3 + iy, k) is a real valued function

@ We will use the Fourier expansion of Eg(z, k), which is defined as

Eo(z,k) =22 > byg’
/=1

where g = %72

and
ahpsl nl ¢
k 271'1]
bg ekn 2
k L n
(§ 4 >0 o j=0
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|
Show that e Eo(—3 + iy, k) is a real valued function

@ Case 1: When / is squarefree, Koblitz simplifies by to

5 K
T2

by = ki Y i nomd)E (— )ru(m)
E

)€ 1020 odd m|t,modd

where

0, ny not squarefree
p(n1) = , . - o
(=1)", ny is the product of r distinct primes

@ Note that €k+1 +1 as k is odd.

ik

@ Thus, every part of by is real except for the factor e 2 .
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Show that e Eo(—3 + iy, k) is a real valued function

o Case 2: (£ not squarefree. Let £ = p?V4y and p? { £y. By Koblitz,

2(/(—2)V7 p:2
by _ S phtk=2), p odd prime p | £
b[o v h=0 ,

hZ PH=2) — X1y (P)P hZ h(k=2) " p odd prime p { 4.
-0 =0

lo

A
where A = % and x(_1pg = (%) (p).
@ Thus, by = Aby, where A € R
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Show that e Eo(—3 + iy, k) is a real valued function

e Remember that £ = p®“¢3. We could continue pulling factors out of £
until we arrive at a squarefree value, ¢,. This would give us a chain of
equivalencies, by = Aby, = ABby, = ... = AB...Nb;, where each
scalar is a real constant.

o Thus, £ = Ch,. where C € R. Furthermore, e’ b, = Ce™# b, By the
first case, the right side is now real valued, and thus the left side
must also be real
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|
Show that eﬂTikEo(—% + iy, k) is a real valued function

@ Returning to the Fourier expansion, we now have

o0
ewikEo (z,k) = — 25 Zeqkbgq
=1

where g = 2772,
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-
c c ik g
Approximating e+ EO(—% + iy, k)
o B(z)= X ik
(u2v)=1,u>0 X

@ We aim to find a finite approximation for this infinite sum that is
accurate for k large enough. Thus, consider the following terms

1 1 1
u=1lv=0:—F= = p
z2 (—% +iy)2 (re’(ﬂ'*‘;))i
1 1 1
u=1v=1: - = =
(z+1)2  (3+iy)2  (re?)2
Note that § = arctan(2y). Let
1 i

Mo =

+ .
(re"‘s)g (,e;(w_a))g
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-
Approximating e+ Eo(—2 + iy, k)

@ We convert to a trigonometric function by the identity
e™ = cos (x) + isin (x). From here, by using trigonometric identities
and simplifying, we find that

Mo — 1t /2 |
cos (

), k=1mod 4
k =3 mod 4.

SEINIES
_|_
FISERNE
oud

ik .
@ Note that e’ ¢ My is real valued.
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-
Approximating e+ Eo(—2 + iy, k)

@ The following two sums include all of the terms left to be bounded:

- k - k
oy L L (2
v#0,1 (Z + V)2 (u,2v)=1,u>1 (UZ + V)2

@ Using tools such as the triangle inequality, bounding sums by

k
integrals, etc. we find that [Ji| = o(1), || << (&)* when k large

Vi
and y < Cngk

o Note that es (J1 + Jo) is real valued.
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Use the Intermediate Value Theorem to determine zeroes
Of MO

@ Recall that
e = 15 V2cos(% — %), k=1 mod4
\@cos(%k—k%), k=3 mod4

is a real valued function (where 6 = arctan 2y).

@ Note that, as My is a valid approximation for <y< \/ﬂ we can
bound 4 to the interval 7 < 4§ < arctan \Q/TL From here on, we use
og k
the notation ynax = \/C%
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Use the Intermediate Value Theorem to determine zeroes
Of MO

@ We wish to find sample points of this function that have the greatest
absolute value. Thus, for k =1 mod 4, we want % — % = nm for

4
some n € N. Solving for §, we find 6 = 2”7” + 2%

@ Substituting this into our interval for § above, we get
2
7 < A g < arctan (2ymax).
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Use the Intermediate Value Theorem to determine zeroes
Of MO

@ Next we solve for n, getting

k 1< <kacta (2¥max) =
— — = < n< — arctan - =
8 4~ T 2« Ymax 4

@ Using some properties of arctan(x), we can simplify this to

ko1 k—1 k
——-<n< — :
8 4 4 ymax
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Use the Intermediate Value Theorem to determine zeroes
Of MO

@ As the sign of cos(% — %) changes every time n increases, this
describes approximately g — O(ym%) — 1 sign changes.

; mik
@ By the Intermediate Value Theorem, there must be a zero of e¢ My

between each of these sign changes, so we have found
approximatelyg - O()%ax) — 2 zeroes.
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Proving the Main Theorem

@ Recall that ewTikEo(z k) = e’ Mo + ewTik(o( )+ c1(81) ) for x = —3

and k large. From this, each sign change of s I\/Io found above also
corresponds to a sign change of e’s Eo(z k).

@ Therefore, by the IVT, we have found approximately g - O( k )—2

Ymax

zeroes of et Eo(z, k) when k is large.
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Proving the Main Theorem

@ Repeating this entire process for Ei(z, k), we find a total of
2
approximately & — O(kaax) — 4 zeroes of Eo(z, k).
@ By the valence formula for Ex(z, k), there are at most L%J zeroes.

Therefore we are missing approximately

O(-5-) + 4 = O(Vklog k) + 4 zeroes.

Ymax
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Thank you for listening.

Samantha Moore (UNCO) Zeroes of Eisenstein Series July 18, 2016 21 /21



