On the Zeroes of Half Integral Weight Eisenstein Series of $\Gamma_0(4)$

Samantha Moore

July 18, 2016

Samantha Moore (UNCO)

Zeroes of Eisenstein Series

July 18, 2016 1 / 21

< 🗇 🕨 < 🖃 🕨

Background

Definition

$$\Gamma_{\mathbf{0}}(\mathbf{4}) = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a, b, c, d \in \mathbb{Z}, ad - bc = 1, c \equiv 0 \mod 4 \}$$

Definition

The Eisenstein series of weight $\frac{k}{2}$ for each of the cusps of $\Gamma_0(4)$ are modular forms defined as:

•
$$\mathbf{E}_{\infty}(\mathbf{z}) = e^{\frac{\pi i k}{4}} \sum_{(2c,d)=1,c>0} \frac{G(\frac{-d}{4c})^k}{(4cz+d)^{k/2}}.$$

• $\mathbf{E}_0(\mathbf{z}) = \sum_{(u,2v)=1,u>0} \frac{(\frac{-v}{u})\epsilon_u^k}{(uz+v)^{k/2}}.$
• $\mathbf{E}_{\frac{1}{2}}(\mathbf{z}) = e^{\frac{-\pi i k}{4}} \sum_{(2c,d)=1,d>0} \frac{G(\frac{d-2c}{8d})^k}{(dz+c)^{k/2}}.$

(日) (同) (三) (三)

Project Goal

Project Goal

I wish to determine the location of the zeroes of the Eisenstein series E_{∞} of $\Gamma_0(4)$.

イロト イヨト イヨト イヨト

Fundamental Domains

 F_{∞}

イロト イヨト イヨト イヨト

July 18, 2016 4 / 21

3

Zeroes of $\Gamma_0(4)$

Theorem

For k sufficiently large, all but at most $O(\sqrt{k \log k}) + 4$ zeroes of $E_{\infty}(z, k)$ lie on the lines $x = -\frac{1}{2}$ of F_0 and $x = \frac{1}{2}$ of $F_{\frac{1}{2}}$.

(日) (同) (三) (三)

Proof Overview

- Show that $e^{\frac{\pi i k}{4}} E_0(-\frac{1}{2} + i y, k)$ is a real valued function
- Find a real valued trigonometric approximation of $e^{\frac{\pi ik}{4}}E_0(-\frac{1}{2}+iy,k)$, which we denote as $e^{\frac{\pi ik}{4}}M_0$
- Bound the error of this approximation for large k and $y \leq \frac{c\sqrt{k}}{\sqrt{\log k}}$, where $c \leq 1$ is a constant
- Use the Intermediate Value Theorem to determine zeroes of M_0
- By our bounds on the error of M_0 in relation to $E_0(-\frac{1}{2} + iy, k)$, we prove that each of the zeroes of M_0 correspond to a zero of $E_0(-\frac{1}{2} + iy, k)$ and thus a zero of $E_{\infty}(z, k)$.

Show that $e^{\frac{\pi ik}{4}}E_0(-\frac{1}{2}+iy,k)$ is a real valued function

• We will use the Fourier expansion of $E_0(z, k)$, which is defined as

$$E_0(z,k) = 2^{\frac{k}{2}} \sum_{\ell=1}^{\infty} b_\ell q^\ell$$

where $q = e^{2\pi i z}$ and

$$b_{\ell} = \frac{\pi^{\frac{k}{2}} \ell^{\frac{k}{2}-1}}{\Gamma(\frac{k}{2}) e^{\frac{\pi i k}{4}}} \sum_{n_0 > 0 \text{ odd}} \epsilon^k_n n^{-\frac{k}{2}} \sum_{j=0}^{n-1} \left(\frac{j}{n}\right) e^{-\frac{2\pi i \ell j}{n}}.$$

Samantha Moore (UNCO)

Zeroes of Eisenstein Series

July 18, 2016 7 / 21

(日) (周) (三) (三)

= 900

Show that $e^{\frac{\pi i k}{4}} E_0(-\frac{1}{2} + i y, k)$ is a real valued function

• Case 1: When ℓ is squarefree, Koblitz simplifies b_ℓ to

$$b_{\ell} = \frac{\pi^{\frac{k}{2}} \ell^{\frac{k}{2}-1}}{\Gamma(\frac{k}{2}) e^{\frac{\pi i k}{4}}} \sum_{n_0 > 0 \text{ odd } n_1 \mid \ell, n_1 \text{ odd}} \epsilon^{k+1}_{n_0 n_1^2} (n_0 n_1^2)^{-\frac{k}{2}} \left(\frac{-\ell}{n_0}\right) \sqrt{n_0} \mu(n_1) n_1$$

where

$$\mu(n_1) = \begin{cases} 0, & n_1 \text{ not squarefree} \\ (-1)^r, & n_1 \text{ is the product of r distinct primes} \end{cases}$$

• Note that $\epsilon_{n_0n_1^2}^{k+1} = \pm 1$ as k is odd.

• Thus, every part of b_{ℓ} is real except for the factor $e^{-\frac{\pi ik}{4}}$.

.

Show that $e^{\frac{\pi ik}{4}}E_0(-\frac{1}{2}+iy,k)$ is a real valued function

• Case 2: (ℓ not squarefree. Let $\ell = p^{2\nu}\ell_0$ and $p^2 \nmid \ell_0$. By Koblitz,

$$\frac{b_{\ell}}{b_{\ell_0}} = \begin{cases} 2^{(k-2)\nu}, & p=2\\ \sum_{h=0}^{\nu} p^{h(k-2)}, & p \text{ odd prime } p \mid \ell_0\\ \sum_{h=0}^{\nu} p^{h(k-2)} - \chi_{(-1)^{\lambda}\ell_0}(p)p^{\lambda-1} \sum_{h=0}^{\nu} p^{h(k-2)}, & p \text{ odd prime } p \nmid \ell_0. \end{cases}$$

where
$$\lambda = \frac{k-1}{2}$$
 and $\chi_{(-1)^{\lambda}\ell_0} = \left(\frac{-1}{p}\right)^{\lambda} \left(\frac{\ell_0}{p}\right)$.
• Thus, $b_{\ell} = Ab_{\ell_0}$ where $A \in \mathbb{R}$

E 990

・ロン ・四 ・ ・ ヨン ・ ヨン

Show that $e^{\frac{\pi i k}{4}} E_0(-\frac{1}{2} + i y, k)$ is a real valued function

- Remember that $\ell = p^{2\nu}\ell_0$. We could continue pulling factors out of ℓ until we arrive at a squarefree value, ℓ_* . This would give us a chain of equivalencies, $b_{\ell} = Ab_{\ell_0} = ABb_{\ell_1} = \dots = AB\dots Nb_{\ell_*}$ where each scalar is a real constant.
- Thus, $\ell = Cb_{\ell_*}$ where $C \in \mathbb{R}$. Furthermore, $e^{\frac{\pi i k}{4}} b_{\ell} = Ce^{\frac{\pi i k}{4}} b_{\ell_*}$ By the first case, the right side is now real valued, and thus the left side must also be real

Show that $e^{\frac{\pi i k}{4}} E_0(-\frac{1}{2} + i y, k)$ is a real valued function

Returning to the Fourier expansion, we now have

$$e^{\frac{\pi ik}{4}}E_0(z,k) = 2^{\frac{k}{2}}\sum_{\ell=1}^{\infty}e^{\frac{\pi ik}{4}}b_\ell q^\ell$$

where $q = e^{2\pi i z}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Approximating $e^{\frac{\pi i k}{4}} E_0(-\frac{1}{2} + i y, k)$

•
$$E_0(z) = \sum_{(u,2v)=1, u>0} \frac{(\frac{-v}{u})\epsilon_u^k}{(uz+v)^{k/2}}.$$

• We aim to find a finite approximation for this infinite sum that is accurate for k large enough. Thus, consider the following terms

$$u = 1, v = 0: \frac{1}{z^{\frac{k}{2}}} = \frac{1}{(-\frac{1}{2} + iy)^{\frac{k}{2}}} = \frac{1}{(re^{i(\pi-\delta)})^{\frac{k}{2}}}$$
$$u = 1, v = 1: \frac{1}{(z+1)^{\frac{k}{2}}} = \frac{1}{(\frac{1}{2} + iy)^{\frac{k}{2}}} = \frac{1}{(re^{i\delta})^{\frac{k}{2}}}$$

Note that $\delta = \arctan(2y)$. Let

$$M_0 = \frac{1}{(re^{i\delta})^{\frac{k}{2}}} + \frac{i^k}{(re^{i(\pi-\delta)})^{\frac{k}{2}}}$$

Approximating $e^{\frac{\pi i k}{4}} E_0(-\frac{1}{2} + i y, k)$

 We convert to a trigonometric function by the identity
 e^{ix} = cos(x) + i sin(x). From here, by using trigonometric identities
 and simplifying, we find that

$$M_0 = r^{-\frac{k}{2}} e^{-\frac{\pi i k}{4}} \sqrt{2} \begin{cases} \cos\left(\frac{\delta k}{2} - \frac{\pi}{4}\right), & k \equiv 1 \mod 4\\ \cos\left(\frac{\delta k}{2} + \frac{\pi}{4}\right), & k \equiv 3 \mod 4. \end{cases}$$

• Note that $e^{\frac{\pi ik}{4}}M_0$ is real valued.

Approximating
$$e^{\frac{\pi i k}{4}} E_0(-\frac{1}{2} + i y, k)$$

• The following two sums include all of the terms left to be bounded:

$$J_1 = \sum_{v \neq 0,1} \frac{\binom{-v}{1} \epsilon_1^k}{(z+v)^{\frac{k}{2}}} \qquad \qquad J_2 = \sum_{(u,2v)=1, u>1} \frac{\binom{-v}{u} \epsilon_u^k}{(uz+v)^{\frac{k}{2}}}.$$

Using tools such as the triangle inequality, bounding sums by integrals, etc. we find that |J₁| = o(1), |J₂| << (⁸/₈₁)^{k/4} when k large and y ≤ c√k/√log k
Note that e^{πik}/₄ (J₁ + J₂) is real valued.

イロト 不得下 イヨト イヨト

Recall that

$$e^{\frac{\pi i k}{4}} M_0 = r^{-\frac{k}{2}} \begin{cases} \sqrt{2} \cos\left(\frac{\delta k}{2} - \frac{\pi}{4}\right), & k \equiv 1 \mod 4\\ \sqrt{2} \cos\left(\frac{\delta k}{2} + \frac{\pi}{4}\right), & k \equiv 3 \mod 4 \end{cases}$$

is a real valued function (where $\delta = \arctan 2y$).

• Note that, as M_0 is a valid approximation for $\frac{1}{2} \le y \le \frac{c\sqrt{k}}{\sqrt{\log k}}$, we can bound δ to the interval $\frac{\pi}{4} \le \delta \le \arctan \frac{2c\sqrt{k}}{\sqrt{\log k}}$. From here on, we use the notation $y_{max} = \frac{c\sqrt{k}}{\sqrt{\log k}}$.

- We wish to find sample points of this function that have the greatest absolute value. Thus, for $k \equiv 1 \mod 4$, we want $\frac{\delta k}{2} \frac{\pi}{4} = n\pi$ for some $n \in \mathbb{N}$. Solving for δ , we find $\delta = \frac{2\pi n}{k} + \frac{\pi}{2k}$.
- Substituting this into our interval for δ above, we get $\frac{\pi}{4} \leq \frac{2\pi n}{k} + \frac{\pi}{2k} \leq \arctan(2y_{max}).$

• Next we solve for *n*, getting

$$rac{k}{8}-rac{1}{4}\leq n\leq rac{k}{2\pi} rctan\left(2y_{max}
ight)-rac{1}{4}.$$

• Using some properties of $\arctan(x)$, we can simplify this to

$$\frac{k}{8} - \frac{1}{4} \le n \le \frac{k-1}{4} - O(\frac{k}{y_{max}}).$$

- As the sign of $\cos(\frac{\delta k}{2} \frac{\pi}{4})$ changes every time *n* increases, this describes approximately $\frac{k}{8} O(\frac{k}{\gamma_{max}}) 1$ sign changes.
- By the Intermediate Value Theorem, there must be a zero of $e^{\frac{\pi i k}{4}} M_0$ between each of these sign changes, so we have found approximately $\frac{k}{8} - O(\frac{k}{y_{max}}) - 2$ zeroes.

Proving the Main Theorem

- Recall that $e^{\frac{\pi ik}{4}} E_0(z,k) = e^{\frac{\pi ik}{4}} M_0 + e^{\frac{\pi ik}{4}} (o(1) + c_1(\frac{8}{81})^{\frac{k}{4}})$ for $x = -\frac{1}{2}$ and k large. From this, each sign change of $e^{\frac{\pi ik}{4}} M_0$ found above also corresponds to a sign change of $e^{\frac{\pi ik}{4}} E_0(z,k)$.
- Therefore, by the IVT, we have found approximately $\frac{k}{8} O(\frac{k}{y_{max}}) 2$ zeroes of $e^{\frac{\pi i k}{4}} E_0(z, k)$ when k is large.

Proving the Main Theorem

- Repeating this entire process for $E_{\frac{1}{2}}(z,k)$, we find a total of approximately $\frac{k}{4} O(\frac{k}{y_{max}}) 4$ zeroes of $E_{\infty}(z,k)$.
- By the valence formula for $E_{\infty}(z, k)$, there are at most $\lfloor \frac{k}{4} \rfloor$ zeroes. Therefore we are missing approximately $O(\frac{k}{y_{max}}) + 4 = O(\sqrt{k \log k}) + 4$ zeroes.

Thank you for listening.

Samantha Moore (UNCO)

Zeroes of Eisenstein Series

July 18, 2016 21 / 21

3

< ロ > < 同 > < 三 > < 三