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Abstract

Protein phosphorylation and dephosphorylation are important intracellular processes. The main
object of study in this paper is the dual futile cycle, a phosphorylation system that describes the dual-
site phosphorylation of a protein by a kinase/phosphatase pair in a sequential and distributive mechanism.
Here, we analyze the 2D Michaelis-Menten (M-M) approximation of this system. It has been previously
shown that this system is bistable and that it converges to a steady state. Here we show that the 2D M-M
version of the dual futile cycle has a non-oscillatory behavior. Understanding its behavior could help
us understand the mitogen-activated protein kinases (MAPK) system which has recently been shown to
have oscillations.

1 Introduction

Protein phosphorylation and dephosphorylation are important intracellular processes that play a role in
signal transduction, cell-cycle control, and nuclear signal integration [9]. Phosphorylation is the enzyme-
mediated addition of a phosphate group to a protein substrate, which often modifies the function of the
substrate. A multiple futile cycle (or multisite phosphorylation system) refers to when a substrate has
multiple sites at which phosphate groups can be attached. Multisite phosphorylation systems can either be
processive or distributive. Here, we focus on distributive systems, which occur when each enzyme-substrate
binding results in one addition or removal of a phosphate group, with 2 sites. The phosphorylation system
is also assumed to be sequential, which occurs when the phosphate groups are added at binding sites in a
certain order.

More specifically, the main object of study is the dual futile cycle, a phosphorylation system that de-
scribes the 2-site phosphorylation of a protein by a kinase/phosphatase pair in a distributive and sequential
mechanism. For this system, Sontag and Wang showed that within restricted parameter ranges, the system
exhibits generic convergence to steady states but no more complicated behavior [11]. Angeli et al. show that
no species tend to be eliminated for any possible parameter values [1].

Central features of phosphorylation systems that are often analyzed are bistability and oscillations. Most
recently, Hell and Rendall showed that the dual futile cycle exhibits bistability for certain values of the
parameters, meaning that there exist two distinct stable stationary solutions [3]. But what about the
oscillatory behavior of the system? Errami et al. have shown that this system has oscillatory behavior
by using an algorithm to detect Hopf bifurcation fixed points in chemical reaction networks with symbolic
rate constants [2]. Jolley et al. considered a variant of the dual-site network, in which the two phosphate
groups are added in the same order as they are removed (rather than the reverse order), thus, there are four
phosphoforms rather than three. Here, they showed that sustained oscillations could be observed in certain
parameter regions [5]. This motivates the question: Do oscillations exist in the 2D M-M approximation of
the dual futile cycle under a sequential and distributive mechanism?

In this paper we reduce the dual futile cycle into two dimensions, using Michaelis-Menten (M-M) theory
[7]. For this reduction, Sontag and Wang present a proof of its non-oscillatory behavior using monotone
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systems theory [11]. Here, we present a simpler proof of the non-oscillatory behavior of this system by using
Bendixson’s criterion.

The motivation of studying the behavior of the dual futile cycle is to gain more insight on the mitogen-
activated protein kinases (MAPK) cascade system. The dual futile cycle is one of the layers that form the
MAPK system. Numerous authors have shown numerically that the MAPK system has oscillatory behavior
[2, 6, 8]. An analytical proof of these results does not exist. Understanding the dual futile cycle can help us
understand the MAPK cascade system.

The paper is organized as follows. In Section 2 we introduce the dual futile cycle. Section 3 is a detailed
explanation of the reduction of the dual futile cycle into 2 dimensions. The core of this paper is the proof of
the non-oscillatory behavior of the 2D version of the futile cycle presented in Section 4. Finally, in Section
5 we discuss some future directions for the MAPK cascade system.

2 The dual futile cycle

The following chemical reaction network is called the dual futile cycle which describes 2-site phosphory-
lation that follows a distributive and sequential mechanism:

S0 + E
k1

�
k2

S0E
k3−→ S1 + E

k4

�
k5

S1E
k6−→ S2 + E

S2 + F
`1
�
`2

S2F
`3−→ S1 + F

`4
�
`5

S1F
`6−→ S0 + F

(1)

A substrate S0 is converted into a product S2 in an activation reaction facilitated by an enzyme E.
Conversely, S2 is transformed back or deactivated into the original substrate S0, by the action of a second
enzyme F . The structure of the dual futile cycle can be seen in Figure 1.

Figure 1: The dual futile cycle

The species in this chemical reaction network include a kinase E, a phosphate F , and substrates (phos-
phoforms) S0, S1, and S2. The intermediate complexes, which are S0E, S1E, S2F , and S1F , are the bound
enzyme-substrate complexes.

For simplicity we will change our notation. The intermediate complexes, S0E, S1E, S2F , and S1F will
now be C1, C2, C3, and C4, respectively. In this system the reaction constants ki and `i, i ∈ {1, 2, . . . , 6} are
positive numbers and the brackets indicate concentrations. According to mass-action kinetics the chemical
reaction system defined by the 2-site phosphorylation network (1) can be modeled by the following ODEs:

d[S0]

dt
= `6[C4]− k1[S0][E] + k2[C1], (2)

d[S2]

dt
= k6[S1][E]− `1[S2][F ] + `2[C3], (3)

d[C1]

dt
= k1[S0][E]− (k2 + k3)[C1], (4)

d[C2]

dt
= k4[S1][E]− (k5 + k6)[C2], (5)

d[C4]

dt
= `4[S1][F ]− (`5 + `6)[C4], (6)
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d[C3]

dt
= `1[S2][F ]− (`2 + `3)[C3], (7)

d[S1]

dt
= k3[C1]− k4[S1][E] + k5[C2] + `3[C3] + `5[C4]− `4[S1][F ], (8)

d[E]

dt
= (k2 + k3)[C1] + (k5 + k6)[C2]−K1[S0][E]− k4[S1][E], (9)

d[F ]

dt
= (`2 + `3)[C3] + (`5 + `6)[C4]− `1[S2][F ]− `4[S1][F ], (10)

together with the following conservation laws:

ST = [S0] + [S2] + [S1] + [C1] + [C2] + [C4] + [C3],

ET = [E] + [C1] + [C2],

FT = [F ] + [C4] + [C3].

(11)

The quantities in (11) are the total concentrations of the enzymes and the substrates that are conserved
under evolution. Note that the concentrations of [E] and [F ] can be expressed in terms of ET and FT and
the concentrations of their respective complexes. For example, the concentration of [E] can be written as
follows:

d[E]

dt
= −d[C1]

dt
− d[C2]

dt
.

In a similar way, equation (8) can be expressed in terms of ST and equations (2) to (6). Thus it is possible
to discard the equations (8) to (10), and reduce the number of equations in the system from nine to six and
the resulting system is equivalent to the original nine-equation one. This six-equation system matches with
the one found in [3, 10, 11].

3 The 2D M-M reduction of the dual futile cycle

Using Michaelis-Menten (M-M) theory [7] we now reduce the network (1) to 2 dimensions. It should be
noted that apart from the slightly different notation this reduction is identical to the one in [3]. A similar
reduction can be found in [11].

After rescaling the concentrations and time, the new system of equations becomes

d[S0]

dτ
= `6[C̃4]− k1[S0][Ẽ] + k2[C̃1],

d[S2]

dτ
= k6[S1][Ẽ]− `1[S2][F ] + `2[C̃3],

ε
d[C̃1]

dτ
= k1[S0][Ẽ]− (k2 + k3)[C̃1],

ε
d[C̃2]

dτ
= k4[S1][Ẽ]− (k5 + k6)[C̃2], (12)

ε
d[C̃4]

dτ
= `4[S1][F̃ ]− (`5 + `6)[C̃4],

ε
d[C̃3]

dτ
= `1[S2][F̃ ]− (`2 + `3)[C̃3],

where

ET = εẼT , [C1] = ε[C̃1], [C4] = ε[C̃4], [E] = ε[Ẽ], τ = εt,

FT = εF̃T , [C2] = ε[C̃2], [C3] = ε[C̃3], [F ] = ε[F̃ ],
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for a small ε > 0. Since the enzyme concentrations are small compared to the concentrations of the substrates
then ε > 0 is also chosen to be small.

Setting ε = 0 in the system (12) gives

[C̃1] =
k1

k2 + k3
[S0][Ẽ],

[C̃2] =
k4

k5 + k6
[S1][Ẽ],

[C̃4] =
`4

`5 + `6
[S1][F̃ ],

[C̃3] =
`1

`2 + `3
[S2][F̃ ].

(13)

Adding these equations in pairs gives

ẼT =

[
1 +

k1
k2 + k3

[S0] +
k4

k5 + k6
[S1]

]
[Ẽ],

F̃T =

[
1 +

`4
`5 + `6

[S1] +
`1

`2 + k3
[S2]

]
[F̃ ].

(14)

Using (13), the rescaled equations (12) can be written as

d[S0]

dτ
= − k1k3

k2 + k3
[S0][Ẽ] +

`4`6
`5 + `6

[S1][F̃ ],

d[S2]

dτ
=

k4k6
k5 + k6

[S1][Ẽ]− `1`3
`2 + `3

[S2][F̃ ].

(15)

Note that ST = [S0] + [S1] + [S2] + ε([C̃1] + [C̃2] + [C̃4] + [C̃3]). Let S̃T = ST (0) depend on ε, then for
ε = 0 the relation

S̃T = [S0] + [S1] + [S2]

holds so that [S1] = S̃T − [S0]− [S2]. Thus the equations in (15) are of the form

d[S0]

dτ
= − a1[S0]

1 + b1[S0] + c1[S1]
+

a2[S1]

1 + c2[S1] + d2[S2]

d[S2]

dτ
=

a3[S1]

1 + b1[S0] + c1[S1]
− a4[S2]

1 + c2[S1] + d2[S2]
,

(16)

where

a1 =
k1k3ẼT

k2 + k3
, a2 =

`4`6F̃T

`5 + `6
,

a3 =
k4k6ẼT

k5 + k6
, a4 =

`1`3F̃T

`2 + `3
,

b1 =
k1

k2 + k3
, c1 =

k4
k5 + k6

,

c2 =
`4

`5 + `6
, d2 =

`1
`2 + `3

,

by using (14).
The condition for a stationary solution is obtained by setting the equations in (16) to zero. To simplify

we assume that the ratios ki

ki+1+ki+2
, i = 1, 4, 7, 10, between the constants of the reactions producing and

consuming the intermediate complexes during phosphorylation are all equal. That is, from now on

b1 = c1 = c2 = d2,
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which will be denoted as b. Therefore our Michaelis-Menten system (16) can be written as

d[S0]

dτ
= − a1[S0]

1 + b(S̃T − [S2])
+

a2[S1]

1 + b(S̃T − [S0])
,

d[S2]

dτ
=

a3[S1]

1 + b(S̃T − [S2])
− a4[S2]

1 + b(S̃T − [S0])
.

(17)

Finally, we substitute [S1] = S̃T − [S0]− [S2] in (17), which gives us our final M-M system:

d[S0]

dτ
= − a1[S0]

1 + b(S̃T − [S2])
+
a2(S̃T − [S0]− [S2])

1 + b(S̃T − [S0])
:= f([S0], [S2]),

d[S2]

dτ
=
a3(S̃T − [S0]− [S2])

1 + b(S̃T − [S2])
− a4[S2]

1 + b(S̃T − [S0])
:= g([S0], [S2]).

(18)

4 Proof of non-oscillatory behavior

Central features of many biological and biochemical systems that are analyzed are oscillations and bista-
bility. The bistability of the dual futile cycle has been shown by Hell and Rendall in [3]. In this section we
concentrate on the oscillatory behavior of our 2D M-M reduction of the dual futile cycle (18), and we prove
that it does not have periodic solutions. To do so, we will use the well-known Bendixson’s criterion.

Theorem 4.1 (Bendixson’s Criterion). Suppose D is a simply connected open subset of R2. If

∂f

∂x
+
∂g

∂y
6= 0

and does not change sign in D, then there are no periodic orbits of the autonomous system

dx

dt
= f(x, y) and

dy

dy
= g(x, y)

in D.

Theorem 4.2. The M-M 2D version of the dual futile cycle in (18) does not have periodic solutions for all
choices of parameters.

Proof. We prove this by using Theorem 4.1. Consider the system (18), for some choice of S̃T , a1, a2, a3, a4, b, ẼT , F̃T 

0. The set D = {0 � [S0], [S2] � S̃T , [S0] + [S2] � S̃T } is a simply connected open subset of R2. The partial
derivatives of system (18) are given by

∂f

∂τ
= − a1[S0]

1 + b(S̃T − [S2])
+
a2([S̃T ]− [S0]− [S2])

1 + b(S̃T − [S0])

∂g

∂τ
=
a3(S̃T − [S0]− [S2])

1 + b(S̃T − [S2])
− a4[S2]

1 + b(S̃T − [S0]− [S2])
.

Now, we must verify that

∂f

∂τ
+
∂g

∂τ
6= 0

on D. By adding and simplifying, we get that

∂f

∂τ
+
∂g

∂τ
= − a4

1 + b(S̃T − [S0])
− a2(1 + b[S2])

(1 + b(S̃T − [S0]))2
− a1(1 + b(S̃T − [S2])) + a3(b[S0] + 1)

(1 + b(S̃T − [S2]))2
. (19)

Notice that the sum of the partial derivatives in (19) never changes signs because of the bounds that are
set for [S0] and [S2], thus proving that system (18) has no periodic orbits.
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Remark. We can use the Poincaré-Bendixson theorem to prove that every solution converges to some steady
state. This has been previously proved by Sontag and Wang using monotone system theory [11].

5 Discussion and future directions

The proof of non-oscillatory behavior for the dual futile cycle helps us gain a better understanding of large
reaction networks. A well-studied model in cell biology is the MAPK cascade which describes the activity of
mitogen-activated protein kinase. It contains three layers, each of which is a multiple phosphorylation loop
of the type of the multiple futile cycle. More precisely, one of these layers is the dual futile cycle. The layers
are linked by the fact that the fully phosphorylated form of the protein which is the substrate in one layer is
the kinase for the next layer. This system has been modeled by a system of ODE using mass action kinetics
by Huang and Ferrell [4]. Numerical and heuristic evidence has been found indicating that this system has
periodic solutions [2, 6, 8]. Even though this evidence exists, there does not exist an analytical proof of
oscillatory behavior in the MAPK cascade. Can Michaelis-Menten reduction help? Does the non-oscillatory
behavior of the dual futile cycle contradict the fact that MAPK cascade has been said to have oscillations?
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