Higher-Dimensional Analogues of the Combinatorial Nullstellensatz

Jake Mundo July 20, 2016

Swarthmore College

Schwartz-Zippel Lemma

Let $F \in K[x_1, \dots, x_n]$ be a nonzero polynomial of degree d and let $S \subset K$ be finite. Then

 $|Z(F) \cap S^n| \le d|S|^{n-1}.$

Schwartz-Zippel Lemma

Let $F \in K[x_1, \dots, x_n]$ be a nonzero polynomial of degree d and let $S \subset K$ be finite. Then

 $|Z(F) \cap S^n| \le d|S|^{n-1}.$

Why is it useful?

Schwartz-Zippel Lemma

Let $F \in K[x_1, \dots, x_n]$ be a nonzero polynomial of degree d and let $S \subset K$ be finite. Then

 $|Z(F) \cap S^n| \le d|S|^{n-1}.$

Why is it useful?

no restrictions on the polynomial

Schwartz-Zippel Lemma

Let $F \in K[x_1, \dots, x_n]$ be a nonzero polynomial of degree d and let $S \subset K$ be finite. Then

```
|Z(F) \cap S^n| \le d|S|^{n-1}.
```

Why is it useful?

- \cdot no restrictions on the polynomial
- powerful tool for polynomial identity testing

Schwartz-Zippel Lemma

Let $F \in K[x_1, \dots, x_n]$ be a nonzero polynomial of degree d and let $S \subset K$ be finite. Then

```
|Z(F) \cap S^n| \le d|S|^{n-1}.
```

Why is it useful?

- no restrictions on the polynomial
- powerful tool for polynomial identity testing

How tight is the bound?

• roughly, tightest for polynomials of form $\sum_{i} \prod_{j} (x_i - s_j)$

Combinatorial Nullstellensatz (Alon 1999)

Let $F \in K[x_1, \dots, x_n]$, and let $S_i \subset K$ for $i \in \{1, \dots, n\}$. Define $G_i(x_i) = \prod_{s_i \in S_i} (x_i - s_i)$, and suppose F vanishes on $\prod_{i=1}^n Z(G_i)$. Then there are polynomials $H_1, \dots, H_n \in K[x_1, \dots, x_n]$ with $\deg(H_i) \leq \deg(F_i) - \deg(G_i)$ such that

$$F = \sum_{i=1}^{n} G_i H_i.$$

Combinatorial Nullstellensatz (Alon 1999)

Let $F \in K[x_1, \dots, x_n]$, and let $S_i \subset K$ for $i \in \{1, \dots, n\}$. Define $G_i(x_i) = \prod_{s_i \in S_i} (x_i - s_i)$, and suppose F vanishes on $\prod_{i=1}^n Z(G_i)$. Then there are polynomials $H_1, \dots, H_n \in K[x_1, \dots, x_n]$ with $\deg(H_i) \leq \deg(F_i) - \deg(G_i)$ such that

$$F=\sum_{i=1}^n G_iH_i.$$

• note: we will assume K is a field throughout the talk

Combinatorial Nullstellensatz (Alon 1999)

Let $F \in K[x_1, \dots, x_n]$, and let $S_i \subset K$ for $i \in \{1, \dots, n\}$. Define $G_i(x_i) = \prod_{s_i \in S_i} (x_i - s_i)$, and suppose F vanishes on $\prod_{i=1}^n Z(G_i)$. Then there are polynomials $H_1, \dots, H_n \in K[x_1, \dots, x_n]$ with $\deg(H_i) \leq \deg(F_i) - \deg(G_i)$ such that

$$F = \sum_{i=1}^{n} G_i H_i.$$

- note: we will assume K is a field throughout the talk
- enormous applications in many areas

Second Combinatorial Nullstellensatz (Alon 1999)

Let $F \in K[x_1, \dots, x_n]$, and suppose that $\deg(f) = \sum_{i=1}^n t_i$ for nonnegative integers t_i . Suppose further that the coefficient of $\prod_{i=1}^n x_i^{t_i}$ in F is nonzero. Then if $S_1, \dots, S_n \in K$ with $\#S_i > t_i$ for each i, there is $s \in S_1 \times \dots \times S_n$ such that

$$F(s) \neq 0.$$

Cauchy-Davenport Theorem (Cauchy 1813)

If p is a prime, and A, B are two nonempty subsets of \mathbb{Z}_p , then

 $|A + B| \ge \min\{p, |A| + |B| + 1\}.$

Cauchy-Davenport Theorem (Cauchy 1813)

If p is a prime, and A, B are two nonempty subsets of \mathbb{Z}_p , then

```
|A + B| \ge \min\{p, |A| + |B| + 1\}.
```

Theorem (Chevalley 1935, special case)

Let *p* be a prime, and let $P_1, \dots, P_m \in \mathbb{Z}_p[x_1, \dots, x_n]$. If $n > \sum_{i=1}^m \deg(P_i)$ and the polynomials P_i have a common zero, then they have another common zero.

Cauchy-Davenport Theorem (Cauchy 1813)

If p is a prime, and A, B are two nonempty subsets of \mathbb{Z}_p , then

```
|A + B| \ge \min\{p, |A| + |B| + 1\}.
```

Theorem (Chevalley 1935, special case)

Let *p* be a prime, and let $P_1, \dots, P_m \in \mathbb{Z}_p[x_1, \dots, x_n]$. If $n > \sum_{i=1}^m \deg(P_i)$ and the polynomials P_i have a common zero, then they have another common zero.

 both classical results follow easily from Combinatorial Nullstellensatz

Our Goal

Goal

To find generalizations of the Combinatorial Nullstellensatz into higher dimensions, that is, to generalize the theorem so that the sets *S_i* can be in more than one dimension and the polynomials *G_i* can be in more than one variable.

Goal

To find generalizations of the Combinatorial Nullstellensatz into higher dimensions, that is, to generalize the theorem so that the sets *S_i* can be in more than one dimension and the polynomials *G_i* can be in more than one variable.

 may have applications analogous to original applications of theorem

Goal

To find generalizations of the Combinatorial Nullstellensatz into higher dimensions, that is, to generalize the theorem so that the sets *S_i* can be in more than one dimension and the polynomials *G_i* can be in more than one variable.

- may have applications analogous to original applications of theorem
- \cdot 2 \times 2 case already considered by Mojarrad et al.

Background: The Partition

• in original theorem, *n* is partitioned into $0 < 1 < \cdots < n$

- in original theorem, *n* is partitioned into $0 < 1 < \cdots < n$
- from now on, assume that P is the partition of n given by

 $0 = n_0 < n_1 < n_2 < \cdots < n_k = n$

- in original theorem, *n* is partitioned into $0 < 1 < \cdots < n$
- from now on, assume that *P* is the partition of *n* given by

$$0 = n_0 < n_1 < n_2 < \cdots < n_k = n$$

• now we can have G_i higher-dimensional

- in original theorem, n is partitioned into $0 < 1 < \cdots < n$
- from now on, assume that P is the partition of n given by

$$0 = n_0 < n_1 < n_2 < \cdots < n_k = n$$

• now we can have G_i higher-dimensional

Definition

Let $\mathcal{G} = \{G_i : i \in \{1, \dots, k\}\}$ be a set of polynomials. We say \mathcal{G} is a *P*-family of polynomials if $G_i \in K[x_{n_{i-1}+1}, \dots, x_{n_i}]$ for each *i*.

Background: The Form of the Polynomial

Background: The Form of the Polynomial

• original theorem had special form $F = G_1H_1 + \cdots + G_nH_n$

• original theorem had special form $F = G_1H_1 + \cdots + G_nH_n$

Definition (Cartesian Polynomial)

Let $\mathcal{G} = \{G_i : i \in \{1, \dots, k\}\}$ be a *P*-family of polynomials, and let $F \in K[x_1, \dots, x_n]$. We say *F* is \mathcal{G} -Cartesian if there are polynomials $H_1, \dots, H_k \in K[x_1, \dots, x_n]$ such that $\deg(H_i) \leq \deg(F) - \deg(G_i)$ for each *i* and

$$F=\sum_{i=1}^{k}G_{i}H_{i}.$$

Further, if any such *P*-family of polynomials exists, we say *F* is *P*-Cartesian.

First Generalized Combinatorial Nullstellensatz

Let $\mathcal{G} = \{G_i : i \in \{1, \dots, k\}\}$ be a *P*-family of polynomials, all squarefree, and let $F \in K[x_1, \dots, x_n]$. Suppose *F* vanishes on $\prod_{i=1}^{k} Z(G_i)$. Then *F* is \mathcal{G} -Cartesian (and hence also *P*-Cartesian).

Let $\mathcal{G} = \{G_i : i \in \{1, \dots, k\}\}$ be a *P*-family of polynomials, all squarefree, and let $F \in K[x_1, \dots, x_n]$. Suppose *F* vanishes on $\prod_{i=1}^{k} Z(G_i)$. Then *F* is \mathcal{G} -Cartesian (and hence also *P*-Cartesian).

Outline of Proof:

Let $\mathcal{G} = \{G_i : i \in \{1, \dots, k\}\}$ be a *P*-family of polynomials, all squarefree, and let $F \in K[x_1, \dots, x_n]$. Suppose *F* vanishes on $\prod_{i=1}^{k} Z(G_i)$. Then *F* is \mathcal{G} -Cartesian (and hence also *P*-Cartesian).

Outline of Proof:

• by multivariate division, $F = G_1H_1 + \cdots + G_kH_k + R$

Let $\mathcal{G} = \{G_i : i \in \{1, \dots, k\}\}$ be a *P*-family of polynomials, all squarefree, and let $F \in K[x_1, \dots, x_n]$. Suppose *F* vanishes on $\prod_{i=1}^{k} Z(G_i)$. Then *F* is \mathcal{G} -Cartesian (and hence also *P*-Cartesian).

Outline of Proof:

- by multivariate division, $F = G_1H_1 + \cdots + G_kH_k + R$
- *R* is identically zero by induction on *k*

Let $\mathcal{G} = \{G_i : i \in \{1, \dots, k\}\}$ be a *P*-family of polynomials, all squarefree, and let $F \in K[x_1, \dots, x_n]$. Suppose *F* vanishes on $\prod_{i=1}^{k} Z(G_i)$. Then *F* is \mathcal{G} -Cartesian (and hence also *P*-Cartesian).

Outline of Proof:

- by multivariate division, $F = G_1H_1 + \cdots + G_kH_k + R$
- *R* is identically zero by induction on *k*
- \cdot hence, F is G-Cartesian

Combinatorial Nullstellensatz (again)
Second Combinatorial Nullstellensatz (Alon 1999)

Let $F \in K[x_1, \dots, x_n]$, and suppose that $\deg(f) = \sum_{i=1}^n t_i$ for nonnegative integers t_i . Suppose further that the coefficient of $\prod_{i=1}^n x_i^{t_i}$ in F is nonzero. Then if $S_1, \dots, S_n \in K$ with $\#S_i > t_i$ for each i, there is $s \in S_1 \times \dots \times S_n$ such that

$$F(s) \neq 0.$$

Background: The Special Monomials

Background: The Special Monomials

• in original theorem, coefficient of $\prod_{i=1}^{n} x_{i}^{t_{i}}$ must be nonzero

Background: The Special Monomials

• in original theorem, coefficient of $\prod_{i=1}^{n} x_{i}^{t_{i}}$ must be nonzero

Definition

Let $a = (a_1, \dots, a_n)$. We say the *P*-reduction of *a* is $(a_1 + \dots + a_{n_1}, \dots, a_{n_k+1} + \dots + a_n)$. We also define the *P*-support of a polynomial to be the set of *P*-reductions of the elements of the support.

· in original theorem, coefficient of $\prod_{i=1}^{n} x_i^{t_i}$ must be nonzero

Definition

Let $a = (a_1, \dots, a_n)$. We say the *P*-reduction of *a* is $(a_1 + \dots + a_{n_1}, \dots, a_{n_k+1} + \dots + a_n)$. We also define the *P*-support of a polynomial to be the set of *P*-reductions of the elements of the support.

- the tuple (1,2,1,0,5) has P-reduction (3, 6) for P defined by 0 < 2 < 5

· in original theorem, coefficient of $\prod_{i=1}^{n} x_i^{t_i}$ must be nonzero

Definition

Let $a = (a_1, \dots, a_n)$. We say the *P*-reduction of *a* is $(a_1 + \dots + a_{n_1}, \dots, a_{n_k+1} + \dots + a_n)$. We also define the *P*-support of a polynomial to be the set of *P*-reductions of the elements of the support.

- the tuple (1,2,1,0,5) has P-reduction (3, 6) for P defined by 0 < 2 < 5
- the polynomial x₂x₃⁴ + x₁x₂x₃⁷x₄ has P-support {(3, 4, 0), (2, 7, 1)} for P defined by 0 < 2 < 3 < 4

• in original theorem, required $\#S_i > t_i$

- in original theorem, required $\#S_i > t_i$
- \cdot no longer sufficient to bound cardinality

- in original theorem, required $\#S_i > t_i$
- \cdot no longer sufficient to bound cardinality

Definition

Let $S \in K^n$ be a finite set. Then the algebraic degree of S, denoted d(S), is the degree of the lowest degree polynomial in $K[x_1, \dots, x_n]$ which vanishes completely on S.

- in original theorem, required $\#S_i > t_i$
- \cdot no longer sufficient to bound cardinality

Definition

Let $S \in K^n$ be a finite set. Then the algebraic degree of S, denoted d(S), is the degree of the lowest degree polynomial in $K[x_1, \dots, x_n]$ which vanishes completely on S.

• in one dimension, #S = d(S)

Theorem

Let $F \in K[x_1, \dots, x_n]$, and let $t = (t_1, \dots, t_k)$ be maximal in the *P*-support of *F*. For each $i \in \{1, \dots, k\}$, let $S_i \subset K^{n_i - n_{i-1}}$ be finite with $d(S_i) > t_i$. Then there is $s \in S_1 \times \dots \times S_k$ such that $F(s) \neq 0$.

Theorem

Let $F \in K[x_1, \dots, x_n]$, and let $t = (t_1, \dots, t_k)$ be maximal in the *P*-support of *F*. For each $i \in \{1, \dots, k\}$, let $S_i \subset K^{n_i - n_{i-1}}$ be finite with $d(S_i) > t_i$. Then there is $s \in S_1 \times \dots \times S_k$ such that $F(s) \neq 0$.

• proof inspired by survey of Terence Tao

Theorem

Let $F \in K[x_1, \dots, x_n]$, and let $t = (t_1, \dots, t_k)$ be maximal in the *P*-support of *F*. For each $i \in \{1, \dots, k\}$, let $S_i \subset K^{n_i - n_{i-1}}$ be finite with $d(S_i) > t_i$. Then there is $s \in S_1 \times \dots \times S_k$ such that $F(s) \neq 0$.

 $\cdot\,$ proof inspired by survey of Terence Tao

Theorem

Let $F \in K[x_1, \dots, x_n]$, and let $t = (t_1, \dots, t_k)$ be maximal in the *P*-support of *F*. For each $i \in \{1, \dots, k\}$, let $S_i \subset K^{n_i - n_{i-1}}$ be finite with $d(S_i) > t_i$. Then there is $s \in S_1 \times \dots \times S_k$ such that $F(s) \neq 0$.

 $\cdot\,$ proof inspired by survey of Terence Tao

Outline of Proof:

 find f_i so ∑_{si∈Si} f_i(s_i)s_i^a is 0 when a's terms sum to less than t_i and 1 when they sum to t_i

Theorem

Let $F \in K[x_1, \dots, x_n]$, and let $t = (t_1, \dots, t_k)$ be maximal in the *P*-support of *F*. For each $i \in \{1, \dots, k\}$, let $S_i \subset K^{n_i - n_{i-1}}$ be finite with $d(S_i) > t_i$. Then there is $s \in S_1 \times \dots \times S_k$ such that $F(s) \neq 0$.

 $\cdot\,$ proof inspired by survey of Terence Tao

- find f_i so ∑_{si∈Si} f_i(s_i)s_i^a is 0 when a's terms sum to less than t_i and 1 when they sum to t_i
- consider when $\sum f_1(s_1) \cdots f_k(s_k) s_1^{a_1} \cdots s_k^{a_k}$ is 0 or 1

Theorem

Let $F \in K[x_1, \dots, x_n]$, and let $t = (t_1, \dots, t_k)$ be maximal in the *P*-support of *F*. For each $i \in \{1, \dots, k\}$, let $S_i \subset K^{n_i - n_{i-1}}$ be finite with $d(S_i) > t_i$. Then there is $s \in S_1 \times \dots \times S_k$ such that $F(s) \neq 0$.

 $\cdot\,$ proof inspired by survey of Terence Tao

- find f_i so ∑_{si∈Si} f_i(s_i)s^a_i is 0 when a's terms sum to less than t_i and 1 when they sum to t_i
- consider when $\sum f_1(s_1) \cdots f_k(s_k) s_1^{a_1} \cdots s_k^{a_k}$ is 0 or 1
- conclude $\sum f_1(s_1) \cdots f_k(s_k) F(s_1, \cdots, s_k) \neq 0$

Theorem

Let $F \in K[x_1, \dots, x_n]$, and let $t = (t_1, \dots, t_k)$ be maximal in the *P*-support of *F*. For each $i \in \{1, \dots, k\}$, let $S_i \subset K^{n_i - n_{i-1}}$ be finite with $d(S_i) > t_i$. Then there is $s \in S_1 \times \dots \times S_k$ such that $F(s) \neq 0$.

 $\cdot\,$ proof inspired by survey of Terence Tao

- find f_i so ∑_{si∈Si} f_i(s_i)s^a_i is 0 when a's terms sum to less than t_i and 1 when they sum to t_i
- consider when $\sum f_1(s_1) \cdots f_k(s_k) s_1^{a_1} \cdots s_k^{a_k}$ is 0 or 1
- conclude $\sum f_1(s_1) \cdots f_k(s_k) F(s_1, \cdots, s_k) \neq 0$
- conclude F does not vanish on all of $S_1 \times \cdots \times S_k$

The $2 \times 2 \times \cdots \times 2$ Case

Lemma (Mojarrad et al. 2016)

Let S be a possibly infinite set of curves in K^2 of degree at most d, and suppose that their intersection $\cap_{C \in S} C$ contains a set I of size $|I| > d^2$. Then there is a curve C_0 such that $C_0 \in \cap_{C \in S} C$ and $|C_0 \cap I| \ge |I| - (d-1)^2$.

Lemma (Mojarrad et al. 2016)

Let S be a possibly infinite set of curves in K^2 of degree at most d, and suppose that their intersection $\bigcap_{C \in S} C$ contains a set I of size $|I| > d^2$. Then there is a curve C_0 such that $C_0 \in \bigcap_{C \in S} C$ and $|C_0 \cap I| \ge |I| - (d-1)^2$.

• analogue of Bézout's Theorem for many curves

Lemma (Mojarrad et al. 2016)

Let S be a possibly infinite set of curves in K^2 of degree at most d, and suppose that their intersection $\bigcap_{C \in S} C$ contains a set I of size $|I| > d^2$. Then there is a curve C_0 such that $C_0 \in \bigcap_{C \in S} C$ and $|C_0 \cap I| \ge |I| - (d-1)^2$.

- analogue of Bézout's Theorem for many curves
- no direct analogue for three or more dimensions: consider many planes intersecting in a line

Another Generalized Combinatorial Nullstellensatz

Let $F \in K[x_1, \dots, x_{2m}]$, and denote by $\deg_m(F)$ the degree of F as a polynomial in x_{2m-1}, x_{2m} . For each $i \in \{1, \dots, m\}$, let $S_i \subset K^2$ and suppose $\#S_i > \deg_i(F)^2$. Then there is $s \in S_1 \times \dots \times S_m$ such that f(s) = 0 unless F is P-Cartesian for P defined by $0 < 2 < \dots < 2m$.

Let $F \in K[x_1, \dots, x_{2m}]$, and denote by $\deg_m(F)$ the degree of F as a polynomial in x_{2m-1}, x_{2m} . For each $i \in \{1, \dots, m\}$, let $S_i \subset K^2$ and suppose $\#S_i > \deg_i(F)^2$. Then there is $s \in S_1 \times \dots \times S_m$ such that f(s) = 0 unless F is P-Cartesian for P defined by $0 < 2 < \dots < 2m$.

Let $F \in K[x_1, \dots, x_{2m}]$, and denote by $\deg_m(F)$ the degree of F as a polynomial in x_{2m-1}, x_{2m} . For each $i \in \{1, \dots, m\}$, let $S_i \subset K^2$ and suppose $\#S_i > \deg_i(F)^2$. Then there is $s \in S_1 \times \dots \times S_m$ such that f(s) = 0 unless F is P-Cartesian for P defined by $0 < 2 < \dots < 2m$.

Outline of Proof:

• use lemma to find that *F* vanishes on some $\prod Z(G_i)$

Let $F \in K[x_1, \dots, x_{2m}]$, and denote by $\deg_m(F)$ the degree of F as a polynomial in x_{2m-1}, x_{2m} . For each $i \in \{1, \dots, m\}$, let $S_i \subset K^2$ and suppose $\#S_i > \deg_i(F)^2$. Then there is $s \in S_1 \times \dots \times S_m$ such that f(s) = 0 unless F is P-Cartesian for P defined by $0 < 2 < \dots < 2m$.

- use lemma to find that *F* vanishes on some $\prod Z(G_i)$
- use first generalized Combinatorial Nullstellensatz to show that *F* is Cartesian

Higher Dimensions

• in one dimension, it is easy to find a polynomial that vanishes on exactly a specific set of points

- in one dimension, it is easy to find a polynomial that vanishes on exactly a specific set of points
- in two dimensions, we can find shared curve between curves with Bézout

- in one dimension, it is easy to find a polynomial that vanishes on exactly a specific set of points
- in two dimensions, we can find shared curve between curves with Bézout
- in three or more dimensions, infinite intersection no longer means intersection in a hyperplane

- in one dimension, it is easy to find a polynomial that vanishes on exactly a specific set of points
- in two dimensions, we can find shared curve between curves with Bézout
- in three or more dimensions, infinite intersection no longer means intersection in a hyperplane
- \cdot much harder to find shared curve in three or more dimensions

- in one dimension, it is easy to find a polynomial that vanishes on exactly a specific set of points
- in two dimensions, we can find shared curve between curves with Bézout
- in three or more dimensions, infinite intersection no longer means intersection in a hyperplane
- $\cdot\,$ much harder to find shared curve in three or more dimensions
- hence, difficult to show a polynomial is Cartesian from vanishing on a finite set

Future Work

Further Goal

To generalize the Schwartz-Zippel lemma to higher dimensions, starting with the $2 \times 2 \times \cdots \times 2$ case, by giving a bound on the intersection of a variety in \mathbb{C}^{2k} with $S_1 \times \cdots \times S_k$, with the S_i all 2-dimensional and finite.

Further Goal

To generalize the Schwartz-Zippel lemma to higher dimensions, starting with the $2 \times 2 \times \cdots \times 2$ case, by giving a bound on the intersection of a variety in \mathbb{C}^{2k} with $S_1 \times \cdots \times S_k$, with the S_i all 2-dimensional and finite.

• generalization would present improvements on Schwartz-Zippel in certain cases

Further Goal

To generalize the Schwartz-Zippel lemma to higher dimensions, starting with the $2 \times 2 \times \cdots \times 2$ case, by giving a bound on the intersection of a variety in \mathbb{C}^{2k} with $S_1 \times \cdots \times S_k$, with the S_i all 2-dimensional and finite.

- generalization would present improvements on Schwartz-Zippel in certain cases
- linked to generalized Combinatorial Nullstellensatz

Thank you!

Refrences I

N. Alon.

Combinatorial Nullstellensatz.

Comp. Prob. Comput., 8:7–29, 1999.

- D. Cox, J. Little, and D. O'Shea.
 Ideals, Varieties, and Algorithms. Springer Science+Business Media, LLC, New York, USA, 2007.
- 📔 M. Lasoń.

A generalization of Combinatorial Nullstellensatz. Electronic Journal of Combinatorics, 17:1–6, 2010.

H. Mojarrad, T. Pham, C. Valculescu, and F. de Zeeuw.
 Schwartz-Zippel bounds for two-dimensional products, 2015.

O. Raz, M. Sharir, and F. de Zeeuw.

Polynomials vanishing on Cartesian products: The Elekes-Szabó Theorem revisited.

In 31st Annual Symposium on Computational Geometry, pages 522–536, 2015.

T. Tao.

Algebraic combinatorial geometry: the polynomial method in arithmetic combinatorics, incidence combinatorics, and number theory, 2014.

Thank you!