Texas A&M REU 2017 Number Theory Group

Zeros of Eisenstein Series Arising from Dirichlet Characters

Thomas Brazelton, Victoria Jakicic, Dr. Young

July 18, 2017

Acknowledgements

ĀМ

- Victoria Jakicic
- Texas A&M Mathematics Dept.
- National Science Foundation

The $special \ linear \ group$ of degree 2 with coefficients in $\mathbb{Z},$ denoted $SL_2(\mathbb{Z})$ is defined as

ĀĪÑ

2

$$\mathsf{SL}_2(\mathbb{Z}) := \left\{ egin{pmatrix} a & b \ c & d \end{pmatrix} : a,b,c,d \in \mathbb{Z}, \ ad-bc = 1
ight\}$$

The $special \ linear \ group$ of degree 2 with coefficients in $\mathbb{Z},$ denoted $SL_2(\mathbb{Z})$ is defined as

$$\mathsf{SL}_2(\mathbb{Z}) := \left\{ egin{pmatrix} a & b \ c & d \end{pmatrix} : a, b, c, d \in \mathbb{Z}, \ ad-bc = 1
ight\}$$

An important subgroup is the **Hecke congruence subgroup of level** N of $SL_2(\mathbb{Z})$, defined as

$$\Gamma_0(N) := \left\{ egin{pmatrix} a & b \ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbb{Z}) : c \equiv 0 \mod N
ight\}.$$

The $special \ linear \ group$ of degree 2 with coefficients in $\mathbb{Z},$ denoted $SL_2(\mathbb{Z})$ is defined as

$$\mathsf{SL}_2(\mathbb{Z}) := \left\{ egin{pmatrix} a & b \ c & d \end{pmatrix} : a, b, c, d \in \mathbb{Z}, \ ad-bc = 1
ight\}$$

An important subgroup is the **Hecke congruence subgroup of level** N of $SL_2(\mathbb{Z})$, defined as

$$\Gamma_0(N) := \left\{ egin{pmatrix} a & b \ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbb{Z}) : c \equiv 0 \mod N
ight\}.$$

Let \mathcal{H} denote the upper half-plane

$$\mathcal{H} = \{ \mathbf{x} + i\mathbf{y} \in \mathbb{C} : \mathbf{y} > \mathbf{0} \}.$$

We can see that $SL_2(\mathbb{Z})$ acts on \mathcal{H} by the following:

$$\gamma(z):=\frac{az+b}{cz+d}.$$

ĀМ

3

We can see that $SL_2(\mathbb{Z})$ acts on \mathcal{H} by the following:

$$\gamma(z):=\frac{az+b}{cz+d}.$$

3

From this action, we can pick a coset representative of each orbit.

We can see that $SL_2(\mathbb{Z})$ acts on \mathcal{H} by the following:

$$\gamma(z) := \frac{az+b}{cz+d}.$$

From this action, we can pick a coset representative of each orbit.

The fundamental domain $\mathcal{F} = SL_2(\mathbb{Z}) \setminus \mathcal{H}$ is shown as

A map $f : \mathcal{H} \to \mathbb{C}$ is called a **modular form** of weight *k* if 1) *f* is holomorphic on \mathcal{H} 2) $\lim_{\mathrm{Im}(z)\to\infty} f(z)$ exists 3) *f* is "*weakly modular of weight k*" A map $f : \mathcal{H} \to \mathbb{C}$ is called a **modular form** of weight *k* if 1) *f* is holomorphic on \mathcal{H} 2) $\lim_{\mathrm{Im}(z)\to\infty} f(z)$ exists 3) *f* is "*weakly modular of weight k*"

Weakly modular of weight k means that

$$f(\gamma(z)) = (cz + d)^k f(z)$$

for all
$$\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z}).$$

Modular Forms on Congruence Subgroups

We define the slash operator of weight k to be

$$f\Big|_{\gamma} = (cz+d)^{-k}f(\gamma(z))$$

ĀĪŇ

5

for $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$.

We define the slash operator of weight k to be

$$f\Big|_{\gamma} = (cz+d)^{-k}f(\gamma(z))$$

for
$$\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
.

 $f : \mathcal{H} \to \mathbb{C}$ is a modular form of weight k with respect to $\Gamma_0(N)$ if we replace our last two conditions with: 2) f is weakly modular of weight k with respect to $\Gamma_0(N)$ 3) $f\Big|_{\gamma}$ is holomorphic at ∞ for each $\gamma \in SL_2(\mathbb{Z})$. We define the slash operator of weight k to be

$$f\Big|_{\gamma} = (cz+d)^{-k}f(\gamma(z))$$

for
$$\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
.

 $f : \mathcal{H} \to \mathbb{C}$ is a modular form of weight *k* with respect to $\Gamma_0(N)$ if we replace our last two conditions with: 2) *f* is weakly modular of weight *k* with respect to $\Gamma_0(N)$ 3) $f\Big|_{\gamma}$ is holomorphic at ∞ for each $\gamma \in SL_2(\mathbb{Z})$.

The space of these modular forms is denoted $\mathcal{M}_k(\Gamma_0(N))$.

The classical Eisenstein series is given as

$$E_k = rac{1}{2}\sum_{\gcd(c,d)=1}rac{1}{(cz+d)^k}$$

6

and is a modular form of weight *k* on $SL_2(\mathbb{Z})$.

The classical Eisenstein series is given as

$$E_k = rac{1}{2}\sum_{\gcd(c,d)=1}rac{1}{(cz+d)^k}$$

and is a modular form of weight *k* on $SL_2(\mathbb{Z})$.

These were studied by Rankin, Swinnerton-Dyer, and were shown to have zeros exactly on the boundary of the fundamental domain.

The classical Eisenstein series is given as

$$E_k = rac{1}{2}\sum_{\gcd(c,d)=1}rac{1}{(cz+d)^k}$$

and is a modular form of weight k on $SL_2(\mathbb{Z})$.

These were studied by Rankin, Swinnerton-Dyer, and were shown to have zeros exactly on the boundary of the fundamental domain.

Our Problem (Part 1)

Where do Eisenstein series on $\Gamma_0(N)$ vanish?

A modular form has a Fourier expansion given as

$$f(z)=\sum_{n=0}^{\infty}a_nq^n\qquad q:=e^{2\pi i z},\ z\in \mathcal{H}.$$

A modular form has a Fourier expansion given as

$$f(z) = \sum_{n=0}^{\infty} a_n q^n \qquad q := e^{2\pi i z}, \ z \in \mathcal{H}.$$

A modular form is called a **cusp form** if $a_0 = 0$

A modular form has a Fourier expansion given as

$$f(z) = \sum_{n=0}^{\infty} a_n q^n \qquad q := e^{2\pi i z}, \ z \in \mathcal{H}.$$

A modular form is called a **cusp form** if $a_0 = 0$

The zeros of Hecke cusp forms of weight k were shown to **equidistribute** in \mathcal{F}

A modular form has a Fourier expansion given as

$$f(z) = \sum_{n=0}^{\infty} a_n q^n \qquad q := e^{2\pi i z}, \ z \in \mathcal{H}.$$

A modular form is called a **cusp form** if $a_0 = 0$

The zeros of Hecke cusp forms of weight k were shown to **equidistribute** in \mathcal{F}

Equidistribution means a sort of "formal randomness," and has close ties with Quantum Unique Ergodicity.

A modular form has a Fourier expansion given as

$$f(z) = \sum_{n=0}^{\infty} a_n q^n \qquad q := e^{2\pi i z}, \ z \in \mathcal{H}.$$

A modular form is called a **cusp form** if $a_0 = 0$

The zeros of Hecke cusp forms of weight k were shown to **equidistribute** in \mathcal{F}

Equidistribution means a sort of "formal randomness," and has close ties with Quantum Unique Ergodicity.

Our Problem (Part 2)

What structure do our zeros display?

Recall From Last Time...

A **Dirichlet character** modulo *n* is a map $\chi : \mathbb{Z} \to \mathbb{C}$ which is

· totally multiplicative, that is, $\chi(1) = 1$ and $\chi(mn) = \chi(m)\chi(n)$ for all integers *m*, *n*

· periodic modulo n

· identically zero for all integers not coprime to n.

Recall From Last Time...

A **Dirichlet character** modulo *n* is a map $\chi : \mathbb{Z} \to \mathbb{C}$ which is \cdot totally multiplicative, that is, $\chi(1) = 1$ and $\chi(mn) = \chi(m)\chi(n)$ for all integers *m*, *n*

· periodic modulo *n*

· identically zero for all integers not coprime to n.

We say that χ is a **primitive character** modulo *n* if it is not induced by a character of smaller modulus *k*.

Recall From Last Time...

A **Dirichlet character** modulo *n* is a map $\chi : \mathbb{Z} \to \mathbb{C}$ which is \cdot totally multiplicative, that is, $\chi(1) = 1$ and $\chi(mn) = \chi(m)\chi(n)$ for all integers *m*, *n*

· periodic modulo *n*

· identically zero for all integers not coprime to n.

We say that χ is a **primitive character** modulo *n* if it is not induced by a character of smaller modulus *k*.

Given a primitive Dirichlet character χ_1 modulo q_1 , and a primitive Dirichlet character χ_2 modulo q_2 , we have the associated Eisenstein series of weight *k*:

$$\mathsf{E}_{\chi_1,\chi_2,k}(z) = \sum_{(c,d)=1} \frac{\chi_1(c)\chi_2(d)}{(cq_2z+d)^k} \in \mathcal{M}_k(\Gamma_0(q_1q_2))$$

$$E_{\chi_1,\chi_2,k}(z) = \sum_{(c,d)=1} \frac{\chi_1(c)\chi_2(d)}{(cq_2z+d)^k} \in \mathcal{M}_k(\Gamma_0(q_1q_2))$$

$$\mathsf{E}_{\chi_1,\chi_2,k}(z) = \sum_{(c,d)=1} rac{\chi_1(c)\chi_2(d)}{(cq_2z+d)^k} \in \mathcal{M}_k(\mathsf{F}_0(q_1q_2))$$

ĂМ

9

Where is this thing zero?

Thomas Brazelton |

$$\mathsf{\textit{E}}_{\chi_1,\chi_2,k}(z) = \sum_{(c,d)=1} \frac{\chi_1(c)\chi_2(d)}{(cq_2z+d)^k} \in \mathcal{M}_k(\mathsf{\Gamma}_0(q_1q_2))$$

Where is this thing zero?

The cz + d expansion is "good" for $Im(z) \ll \sqrt{k}$ and the Fourier expansion is "good" for $Im(z) \gg \sqrt{k}$.

$$\mathsf{\textit{E}}_{\chi_1,\chi_2,k}(z) = \sum_{(c,d)=1} \frac{\chi_1(c)\chi_2(d)}{(cq_2z+d)^k} \in \mathcal{M}_k(\mathsf{\Gamma}_0(q_1q_2))$$

Where is this thing zero?

The cz + d expansion is "good" for $Im(z) \ll \sqrt{k}$ and the Fourier expansion is "good" for $Im(z) \gg \sqrt{k}$.

Within a certain horizontal strip, $E_{\chi_1,\chi_2,k}(z)$ is dominated by just a few terms.

We assume q_2 is prime, and let *a* be an integer such that *a* and a + 1 are coprime to q_2 .

Å M (10

We assume q_2 is prime, and let *a* be an integer such that *a* and a + 1 are coprime to q_2 .

10

Zooming In

11

Zooming In

Letting θ denote the angle of *z* from the point $\frac{a}{q_2}$, we have proved that the zeros become distributed evenly with respect to θ as $k \to \infty$.

Thomas Brazelton |

Let z = x + iy, so in a small strip around $\frac{a+1/2}{q_2} - \frac{\epsilon}{q_2k} \le x \le \frac{a+1/2}{q_2} + \frac{\epsilon}{q_2k}$, we have that the main terms are $g_a(z) := \frac{\chi(-a)}{(q_2z - a)^k} + \frac{\chi(-a-1)}{(q_2z - a - 1)^k}$. Let z = x + iy, so in a small strip around $\frac{a+1/2}{q_2} - \frac{\epsilon}{q_2k} \le x \le \frac{a+1/2}{q_2} + \frac{\epsilon}{q_2k}$, we have that the main terms are $g_a(z) := \frac{\chi(-a)}{(q_2z - a)^k} + \frac{\chi(-a-1)}{(q_2z - a-1)^k}$.

This must happen when $x = \frac{a+1/2}{q_2}$.

Let z = x + iy, so in a small strip around $\frac{a+1/2}{q_2} - \frac{\epsilon}{q_2k} \le x \le \frac{a+1/2}{q_2} + \frac{\epsilon}{q_2k}$, we have that the main terms are $g_a(z) := \frac{\chi(-a)}{(a-1)k} + \frac{\chi(-a-1)}{(a-1)k}$.

$$g_a(z) := \frac{\chi(-z)}{(q_2 z - a)^k} + \frac{\chi(-z-1)}{(q_2 z - a - 1)}$$

This must happen when $x = \frac{a+1/2}{q_2}$.

In this strip, we have that $g_a(z) = 0$ exactly when $z = \frac{a}{q_2} + Re^{i\theta}$ satisfies

$$e^{2i\theta k} + (-1)^k \chi_2(a) \overline{\chi_2(a+1)} = 0.$$

Let z = x + iy, so in a small strip around $\frac{a+1/2}{q_2} - \frac{\epsilon}{q_2k} \le x \le \frac{a+1/2}{q_2} + \frac{\epsilon}{q_2k}$, we have that the main terms are $\chi(-a) = \chi(-a-1)$

$$g_a(z) := rac{\chi(-a)}{(q_2 z - a)^k} + rac{\chi(-a - 1)}{(q_2 z - a - 1)^k}.$$

This must happen when $x = \frac{a+1/2}{q_2}$.

In this strip, we have that $g_a(z) = 0$ exactly when $z = \frac{a}{q_2} + Re^{i\theta}$ satisfies

$$e^{2i\theta k} + (-1)^k \chi_2(a) \overline{\chi_2(a+1)} = 0.$$

If θ satisfies the above equation, so does $\theta + \frac{n\pi}{k}$ for any $n \in \mathbb{N}$.

ĀM

13

We look in small regions W_n around each zero of $g_a(z)$.

Thomas Brazelton |

Lemma

The error term $|E_{\chi_1,\chi_2,k}(z) - g_a(z)|$ vanishes quickly as $k \to \infty$.

Lemma

The error term $|E_{\chi_1,\chi_2,k}(z) - g_a(z)|$ vanishes quickly as $k \to \infty$.

Lemma

In each W_n where $1 \le n \le m-1$, both $g_a(z)$ and $E_{\chi_1,\chi_2,k}(z)$ have one zero when k is sufficiently large.

Lemma

The error term $|E_{\chi_1,\chi_2,k}(z) - g_a(z)|$ vanishes quickly as $k \to \infty$.

Lemma

In each W_n where $1 \le n \le m-1$, both $g_a(z)$ and $E_{\chi_1,\chi_2,k}(z)$ have one zero when k is sufficiently large.

Proposition

When $q_1 > 3$, all these zeros are $\Gamma_0(q_1q_2)$ -inequivalent. That is, there does not exist a $\gamma \in \Gamma_0(q_1q_2)$ that maps one zero to another.

Theorem

For *k* sufficiently large, $E_{\chi_1,\chi_2,k}(z)$ has $m = \frac{k}{3} + O\left(\sqrt{k}\log^2(k)\right)$ zeros tending to the vertical line $\Re(z) = \frac{a+1/2}{q_2}$ which are $\Gamma_0(q_1q_2)$ -inequivalent and become distributed with respect to their angle from the point $\frac{a}{q_2}$.

The zeros we have found vary by height on the order of $O(\frac{1}{k})$, and there are $\varphi(q_2)$ lines of them in $(-\frac{1}{2}, \frac{1}{2}]$.

The zeros we have found vary by height on the order of $O(\frac{1}{k})$, and there are $\varphi(q_2)$ lines of them in $(-\frac{1}{2}, \frac{1}{2}]$.

This means we can try to see them on **horocycles**, which are horizontal unit length segments in hyperbolic space. We know that horocyles equidistribute. The zeros we have found vary by height on the order of $O(\frac{1}{k})$, and there are $\varphi(q_2)$ lines of them in $(-\frac{1}{2}, \frac{1}{2}]$.

This means we can try to see them on **horocycles**, which are horizontal unit length segments in hyperbolic space. We know that horocyles equidistribute.

Conjecture

As q_2 tends to infinity, and k tends to infinity much slower, the zeros of $E_{\chi_1,\chi_2,k}(z)$ equidistribute when they are mapped back to the fundamental domain \mathcal{F} .

Thank you!

