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Categories

Category C

A class of objects Ob(C)

A class of associative morphisms HomC(X ,Y ) between each pair of
objects X ,Y ∈ Ob(C)
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Fusion Categories

Abelian C-linear

Monoidal→ (Ob(C),⊗, 1) is a monoid

Rigid→ every object X has left and right duals X ∗

Semisimple→ All objects are direct sums of simple objects

Finite rank→ Finitely many isomorphism classes of simple objects

1 is simple
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Modular Categories

Definition

A fusion category C is braided if there is a family of natural isomorphisms
CX ,Y : X ⊗ Y −→ Y ⊗ X satisfying the hexagon axioms.

Definition

The Müger center of a braided fusion category C is defined

Z2(C) = {X ∈ C : CY ,X ◦ CX ,Y = idX⊗Y ∀Y ∈ C}

Definition

A modular category is a braided, spherical fusion category with trivial
Müger center.
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Classifying Modular Categories

Determine the number of simple objects of each dimension

Determine fusion rules

Xi ⊗ Xj =
∑

NXk
Xi ,Xj

Xk

NXk
Xi ,Xj

= [Xi ⊗ Xj : Xk ]
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Frobenius-Perron Dimension

Definition

The Frobenius-Perron Dimension of a simple object X is the largest
nonnegative eigenvalue of the matrix NX of left-multiplication by X .

Definition

The Frobenius-Perron Dimension of a category C is
∑

FPDim(Xi )
2

summed over all isomorphism classes of simple objects Xi ∈ C.

Definition

A simple object X is invertible if FPDim(X ) = 1. Equivalently,
X ⊗ X ∗ ∼= 1 ∼= X ∗ ⊗ X .
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Frobenius-Perron Dimension

FPDim(X ⊕ Y ) = FPDim(X ) + FPDim(Y )

FPDim(X ⊗ Y ) = FPDim(X )FPDim(Y )

FPDim(X ∗) = FPDim(X )
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Integral and Weakly Integral Fusion Categories

A fusion category C is:

pointed if FPDim(Xi ) = 1 for all simple Xi ∈ C
integral if FPDim(Xi ) ∈ Z for all simple Xi ∈ C
weakly integral if FPDim(C) ∈ Z

In a weakly integral modular category C:

FPDim(Xi )
2
∣∣FPDim(C) for all simple objects Xi ∈ C

FPDim(Xi ) =
√
n for some n ∈ Z+
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Grading of a Fusion Category

Definition

A fusion category C is graded by a group G if:

C = ⊕g∈GCg for abelian subcategories Cg
Cg ⊗ Ch ⊂ Cgh for all g , h ∈ G

A grading is called faithful if all Cg are nonempty.

In a faithful grading, all components have dimension FPDim(C)
|G |

If a simple object X ∈ Cg , then X ∗ ∈ Cg−1

Ce ⊃ Cad , the smallest fusion subcategory containing X ⊗ X ∗ for all
simple X
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Grading of a Fusion Category

Universal Grading

Every fusion category is faithfully graded by its universal grading
group, U(C)

Every faithful grading is a quotient of U(C)

In a modular category, U(C) ∼= G(C)

Ce = Cad

GN-Grading

A weakly integral fusion category is faithfully graded by an elementary
abelian 2-group E

Simple objects are partitioned by dimension: For each g ∈ E , there is
a distinct square-free positive integer ng with ne = 1 and
FPDim(X ) ∈ √ngZ for all simple X ∈ Cg
Ce = Cint
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Fusion Rules

For a simple object X ,

X ⊗ X ∗ ∼= 1⊕
⊕

Cad3y�1
y⊗X∼=X

y ⊕
⊕
z∈Cad
|z|>1

Nz
X ,X∗z
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FPDim(C) = 16p

FPdim(Xi ) ∈ {1, 2, 4,
√

2, 2
√

2,
√
p, 2
√
p, 4
√
p,
√

2p, 2
√

2p}
for all simple Xi
√
ng ∈ {1,

√
2,
√
p,
√

2p}
|E | ∈ {2, 4}
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FPDim(C) = 16p, GN-Grading

dim 1 2 4
√

2 2
√

2
√
p 2

√
p 4

√
p
√

2p 2
√

2p

# simples a b c f d h k l m n

|Cint | = |C|
|E |

|Cint | = a + 4b + 16c

a = |Cpt | = |U(C)|

|Cpt |
∣∣∣|Cint |

|E |
∣∣∣|U(C)|

|E | = 2→ a ∈ {4, 4p, 8, 8p}
|E | = 4→ a ∈ {4, 4p}
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Example case: |E | = 2, a = 8

dim 1 2 4
√

2 2
√

2
√
p 2

√
p 4

√
p
√

2p 2
√

2p

# simples a b c f d h k l m n

|Cg | = 2p = ag + 4bg + 16cg ≡
4

2

→ ag = 2 in all integral components

(Cad)pt = {1, g} = 〈g〉 → 〈g〉 is either modular or symmetric

If 〈g〉 is symmetric, it is either sVec or Rep(Z2)
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Case i: B = 〈g〉 is modular

For a fusion subcategory D ⊆ C, we denote the relative center by

ZC(D) = {X ∈ C : CY ,X ◦ CX ,Y = idX⊗Y ∀Y ∈ D}

If D ⊆ C are both modular, then ZC(D) is also modular and
C ∼= D � ZC(D).

C ∼= B � ZC(B)

|ZC(B)| = 8p → classified by Bruilliard, Plavnik, and Rowell
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Case ii: 〈g〉=sVec

If C is modular, then Cpt = ZC(Cad).

If D is premodular and 〈g〉 = sVec ⊂ ZC(D), then g ⊗ X � X for all
simple X ∈ D.

〈g〉 = sVec ⊂ Cpt = ZC(Cad)

g stabilizes the simple objects of dimension 2 and 4 in Cad , a
contradiction
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Case iii: 〈g〉 = Rep(Z2)

Z2-de-equivariantization of C
new fusion category CZ2 with FPDim(CZ2) = FPDim(C)

2

for each simple X ∈ C such that g ⊗ X ∼= X , there are two simple
objects in CZ2 with dimension FPDim(X )

2

for each pair of simple objects X � Y such that g ⊗ X ∼= Y
(and g ⊗ Y ∼= X ), there is one simple object in CZ2 with dimension
FPDim(X ) = FPDim(Y )
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for each pair of simple objects X � Y such that g ⊗ X ∼= Y
(and g ⊗ Y ∼= X ), there is one simple object in CZ2 with dimension
FPDim(X ) = FPDim(Y )
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Case iii: 〈g〉 = Rep(Z2)

dim 1 2 4
√

2 2
√

2
√
p 2

√
p 4

√
p
√

2p 2
√

2p

# simples a b c f d h k l m n

The non-integral components of the universal grading of C have either

fg ≡
4
p, dg =

p−fg
4

hg = 2

mg = 1
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dim 1 2 4
√

2 2
√

2
√
p 2

√
p 4

√
p
√

2p 2
√

2p

# simples a b c f d h k l m n

The non-integral components of the universal grading of C have either

fg ≡
4
p, dg =

p−fg
4

hg = 2

mg = 1

Simple objects of dimension
√

2 and
√

2p are stabilized by g by parity.

But
√
2
2 and

√
2p
2 cannot be the dimensions of simple objects in a fusion

category. So the non-integral component of C must have simple objects of
dimension

√
p.
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Case iii: 〈g〉 = Rep(Z2)

dim 1 2 4
√
p

# simples a b c h

a′ = 4 + 2b
b′ = 2c
h′ = 4

|(CZ2)int | = 4p = 4 + 2b + 8c → 2|b
|(CZ2)pt |

∣∣∣|(CZ2)int | → 4(1 + b
2 )|4p → (b, c) ∈ {(0, p−12 ), (2p − 2, 0)}
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Case iii: 〈g〉 = Rep(Z2)

(b, c) ∈ {(0, p−12 ), (2p− 2, 0)}

a′ = 4 + 2b = 4p
b′ = 2c = 0
h′ = 4

Cad has only two invertibles, so there can be no simple objects of
dimension 4 without simple objects of dimension 2.

CZ2 is a generalized Tambara-Yamagami category:

Generalized Tambara-Yamagami Category

non-pointed fusion category

the tensor product of two non-invertible simple objects is a direct sum
of invertible objects
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