
Classification of Strictly Weakly Integral Modular Categories of

Dimension 16p

Elena Amparo

July 20, 2017

Abstract

A modular category is a non-degenerate braided fusion category equipped with a ribbon structure.
A complete classification of modular categories is motivated by applications to physics, where unitary
modular categories correspond to (2+1)-dimensional topological quantum field theories. Here, we classify
strictly weakly integral modular categories of dimension 16p.

1 Introduction

The 2016 Nobel Prize in Physics was awarded to Thouless, Haldane, and Kosterlitz for “theoretical dis-
coveries of topological phase transitions and topological phases of matter.” (2+1)-dimensional topological
quantum field theories can arise from unitary modular categories [KSW02]. Because of their widespread ap-
plications in theoretical physics as well as pure mathematics, it is desirable to have a complete classification
of modular categories.

There exist both rank-based and dimension-based approaches to classification. It was shown in [BNRW13]
that there are finitely many modular categories of a given rank, and [BNRW13, BGN+14, BR10, RSW07] pro-
vide complete classification through rank 5 and partial classification through rank 11. We take a dimension-
based approach to classification previously studied in [BGH+13, DT14, BGN+14, BPR16]. Integral modular
categories of dimension pq4 were classified in [BGH+13, DT14]. We weaken the condition of integrality and
characterize strictly weakly integral modular categories of dimension 16p, where p is an odd prime. Strictly
weakly integral modular categories are necessarily of even dimension, and in particular must have dimen-
sion divisible by four [BPR16]. Modular categories of dimension 4p were classified in [BGN+14] and 8p in
[BPR16].

2 Preliminaries

A modular category is a non-degenerate braided fusion category equipped with a ribbon structure. Fusion cat-
egories are semisimple, and in particular all objects are direct sums of simple objects. Fusion categories also
have finite rank, the number of isomorphism classes of simple objects. Each simple object X has a Frobenius-
Perron dimension given by the largest nonnegative eigenvalue of the matrix NX of left-multiplication by X.
The Frobenius-Perron dimension of a fusion category C is FPDim(C) =

∑
FPDim(Xi)

2 summed over all
isomorphism classes of simple objects Xi ∈ C. A fusion category C is weakly integral if FPDim(C) ∈ Z and
integral if FPDim(Xi) ∈ Z for all simple Xi ∈ C. A fusion category is pointed if all of its simple objects are
invertible. If C is weakly integral, then FPDim(Xi)

2
∣∣FPDim(C) for all simple objects Xi ∈ C, and it follows

that all simple objects Xi ∈ C have FPDim(Xi) =
√
ni for some ni ∈ Z+. C is strictly weakly integral if

it is weakly integral with at least one simple object of non-integral dimension. If C is modular and strictly
weakly integral, then 4|FPDim(C) [BPR16].
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A fusion category C is braided if there is a family of natural isomorphisms CX,Y : X⊗Y −→ Y ⊗X satisfying
the hexagon axioms. In particular, the associative tensor product is also abelian. The Müger center of a
braided fusion category C is a fusion subcategory defined

Z2(C) = {X ∈ C : CY,X ◦ CX,Y = idX⊗Y ∀Y ∈ C}

A braided fusion category is non-degenerate if its Müger center is the trivial fusion subcategory generated
by the unit object, and symmetric if Z2(C) = C. For braided fusion categories D ⊆ C, the relative center or
centralizer of D in C is denoted

D′ = ZC(D) = {X ∈ C : CY,X ◦ CX,Y = idX⊗Y ∀Y ∈ D}

If C is nondegenerate then (D′)′ = D and FPDim(D) ·FPDim(D′) = FPDim(C). If D ⊆ C are both modular,
then D′ is also modular and C ∼= D �D′. If C is modular, then Cpt = C′ad [BGH+13].

A fusion category C is graded by a group G if C can be decomposed into a direct sum of full abelian subcat-
egories indexed by G, C = ⊕g∈GCg such that Cg ⊗ Ch ⊂ Cgh for all g, h ∈ G. A grading is called faithful if

all Cg are nonempty. In a faithful grading, all components have the same dimension, FPDim(Cg) = FPDim(C)
|G| .

Every fusion category is faithfully graded by its universal grading group, U(C), and every faithful grading
group is a quotient of U(C) [GN06]. In a modular category, U(C) ∼= G(C), the group of isomorphism classes of
invertible simple objects. The trivial component of the universal grading is Ce = Cad, the fusion subcategory
generated by subobjects of X ⊗X∗ where X runs through all simple objects of C.

A strictly weakly integral fusion category is faithfully graded by an elementary abelian 2-group E, with
|E| = 2k for some k [GN06]. This grading is called the dimensional grading or the GN-grading, and
corresponds to partitioning the simple objects by dimension. For each g ∈ E, there is a distinct square-free
positive integer ng with ne = 1 and FPDim(X) ∈ √ngZ for all simple X ∈ Cg. Thus the identity component
is the fusion subcategory generated by the simple objects of integer dimension, Ce = Cint.

3 Results

Let C be a strictly weakly integral modular category with FPDim(C) = 16p, for p an odd prime. We have
FPDim(Xi) ∈ {1, 2, 4,

√
2, 2
√

2,
√
p, 2
√
p, 4
√
p,
√

2p, 2
√

2p} for all simple Xi. Thus the dimensions of simple

objects can be partitioned into Z,
√

2Z,
√
pZ, and

√
2pZ, and |E| ∈ {2, 4}.

We will use the following variables to denote the number of simple objects of each dimension:

FPDim 1 2 4
√

2 2
√

2
√
p 2

√
p 4

√
p
√

2p 2
√

2p
# simples a b c f d h k l m n

In the dimensional grading, each component has equal dimension, and in particular FPDim(Cint) = FPDim(C)
|E| .

In the integral component, we must have FPDim(Cint) = a+ 4b+ 16c. We have a = FPDim(Cpt) = |U(C)|.
We must have FPDim(Cpt)|FPDim(Cint) because the pointed subcategory is a fusion subcategory of the
integral subcategory, and |E|

∣∣|U(C)| because E is a quotient of U(C).

Lemma 3.1. If C is a strictly weakly integral modular category with FPDim(C) = 2np and p|FPDim(Cpt),
then |E| = 2.

Proof. The components of the universal grading must have dimension 2k for some k ≥ 1. Then the compo-
nents of the universal grading cannot accommodate simple objects with dimensions in

√
pZ or

√
2pZ. So all

non-integral simple objects must have dimensions in
√

2Z, so |E| = 2.
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From the above, we obtain five possible cases. When |E| = 2, a ∈ {4, 8, 4p, 8p}. When |E| = 4, a = 4.

3.1 |E| = 2, a = 8p

Definition 3.1. A generalized Tambara-Yamagami category is a non-pointed fusion category in which the
tensor product of two non-invertible simple objects is a direct sum of invertible objects.

Lemma 3.2. If C is a strictly weakly integral modular category with FPDim(C) = 2np and FPDim(Cpt) =
2n−1p, then C is a Deligne product of an Ising category and a pointed modular category.

Proof. The components of the universal grading must have dimension 2, so they can only accommodate
non-integral simple objects of dimension

√
2. In the dimensional grading, C = C0 ⊕ C1 with C0 = Cint = Cpt.

Any tensor product of non-integral objects is a direct sum of invertibles, C1 ⊗ C1 ⊂ C0 = Cpt. Thus C
is a generalized Tambara-Yamagami category. By [BPR16], any modular generalized Tambara-Yamagami
category is a Deligne product of an Ising category and a pointed modular category.

By the above lemma, C is a Deligne product of an Ising category and a pointed modular category.

3.2 |E| = 2, a = 8

The components of the universal grading have dimension 2p. For the integral components of the universal
grading, we have 2p = ag + 4bg + 16cg and thus ag ≡

4
2. Thus ag ≥ 2 over 4 integral components, so we must

have ag = 2 in each component. Each integral component also contains some non-invertible simple objects,

with bg ≡
4

p−1
2 and cg =

p−1
2 −bg
4 .

In the non-integral components of the universal grading, we have either fg ≡
4
p and dg =

p−fg
4 , hg = 2, or

mg = 1.

Lemma 3.3. If Cad 6= Cint, then Z2(Cint) = C′int ( Cpt.

Proof. Cad ⊆ Cint and thus C′int ⊆ C′ad = Cpt. We have C′int ⊆ Cpt ⊆ Cint, so Z2(Cint) = C′int. Now suppose
C′int = Cpt. Then C′′int = Cint = Cad, a contradiction. Thus C′int ( Cpt.

Lemma 3.4. If Cint 6= Cpt, then Z2(Cint) = C′int ( Cad.

Proof. Cpt ⊆ Cint and thus C′int ⊆ C′pt = Cad ⊆ Cint, so Z2(Cint) = C′int. Now suppose C′int = Cad. Then
C′′int = Cint = Cpt, a contradiction. So C′int ( Cad.

Lemma 3.5. If C is a strictly weakly integral modular category and |Cint| = |C|
2 , then Cint is not modular.

Proof. If Cint is modular, then C ∼= Cint �D for some |D| = 2. Then 4 - |D|, so it must be integral. But then
C must be integral, a contradiction.

So Z2(Cint) ⊆ (Cad)pt as fusion subcategories, and Cint is not modular. (Cad)pt = {1, g} = 〈g〉 where g is the
unique nontrivial, self-dual invertible in Cad. So Z2(Cint) = 〈g〉. g fixes all simple objects with dimensions
in 2Z,

√
2Z, and

√
2pZ, and maps each simple object with dimension 1 or dimension in

√
pZ to the other

simple object of the same dimension in the same component of the universal grading.

〈g〉 is symmetric, so it is either Tannakian (g a boson) or sVec (g a fermion) [BPR16].

Lemma 3.6 ([Mue98], Lemma 5.4). If 〈g〉 = sVec ⊆ D′ for some premodular category D, then g ⊗ Y � Y
for all simple Y ∈ D.
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Case i: 〈g〉 = sVec
Then sVec ⊆ Cpt = C′ad, so we must have g ⊗ Y � Y for all simple Y ∈ Cad. But g stabilizes all of the
non-invertible simple objects in Cad, and there must be at least one such object. So we cannot have 〈g〉 = sVec.

Case ii: 〈g〉 Tannakian
We have C ⊃ 〈g〉 = Rep(Z2) and we can consider CZ2 , the Z2-de-equivariantization of C. FPDim(CZ2) =
FPDim(C)
|Z2| = 8p, so it is weakly integral. This case is only possible when the non-integral simple objects have

dimension
√
p. Simple objects with dimension

√
2 or

√
2p are stabilized by g, so CZ2

would contain simple

objects with dimension
√
2
2 or

√
2p
2 , which contradicts that CZ2

is weakly integral.

We use unprimed variables to denote the total number of simple objects of each dimension in C, and primed
variables to denote the total numbers in CZ2 . In CZ2 , we have a′ = 4 + 2b, b′ = 2c and h′ = 4. In the
dimensional grading, we have |E| = 2 and |(CZ2

)int| = 4p = 4 + 2b + 8c. Then 2 + b + 4c = 2p ≡
4

2 and

so 4|b. We must have a′ = |(CZ2)pt| = 4 + 2b = 4(1 + b
2 )|4p = |(CZ2)int|. Then b

2 ∈ {0, p − 1}. Then

(b, c) ∈ {(0, p−12 ), (2p− 2, 0)}. But b = 0 is impossible because FPDim(X ⊗X∗) = 16 when FPDim(X) = 4,
but there are only two invertibles in Cad. So c = 0 and CZ2

is a generalized Tambara-Yamagami category.
(Cint)Z2 is modular because Z2(Cint) = Rep(Z2). So C is a gauging of a pointed modular category of
dimension 4p.

3.3 |E| = 2, a = 4p

In the universal grading, we have p components with ag = 4, p components with bg = 1, and 2p components
with fg = 2. Cad is pointed and thus C is nilpotent.

So Z2(Cint) ( Cad as fusion subcategories and Cint cannot be modular, so Z2(Cint) = 〈g〉 for some nontrivial
self-dual invertible g ∈ Cad. 〈g〉 is symmetric, so it is either Tannakian or sVec.

Case i: 〈g〉 = sVec
We have 〈g〉 = sVec = C′int, so g cannot stabilize any simple objects in Cint. But all simple objects of
dimension 2 are stabilized by all of Cad. So this case is impossible.

Case ii: 〈g〉 = Rep(Z2)
CZ2

is weakly integral, so g cannot stabilize any simple objects of dimension
√

2. So we must have f ′ = f
2 = 2p.

g stabilizes all simple objects of dimension 2, and g cannot stabilize any invertibles. So a′ = a
2 + 2b = 4p

and (Cint)Z2 is pointed. So CZ2 is a generalized Tambara-Yamagami category. (Cint)Z2 is modular because
Z2(Cint) = Rep(Z2). So C is a gauging of a pointed modular category of dimension 4p.

Remark 3.1. We have g ∈ Cad is a nontrivial self-dual invertible that does not stabilize any simple X with
FPDim(X) =

√
2. But every such X is stabilized by exactly one nontrivial self-dual invertible in Cad. So all

of the nontrivial invertibles gi in Cad are self-dual.

3.4 |E| = 4, a = 4

In this case E = U(C) = Z2×Z2
∼= G(C) . Thus all of the invertibles are self-dual. We have Cint = Cad and thus

C′int = Cpt ⊂ Cint, so C′int = Z2(Cint) = Cpt ∼= Z2×Z2. So Cpt is symmetric, so 〈g〉 is symmetric for all g ∈ Cpt.

In the integral component, we have a = 4, b ≡
4
p − 1, and c = p−1−b

4 . In the non-integral components we

have f ≡
4

2 and d = 2p−f
4 , h = 4 or k = 1, and m = 2.
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Cpt has three nontrivial invertibles, g, h, gh, which are either bosons (θ=1) or fermions (θ = −1). We must
have θgθh = θgh, so there are either two fermions or no fermions.

3.5 |E| = 2, a = 4

In the trivial component of the universal grading, we have ag = 4, bg ≡
4
p − 1, and cg =

p−1−bg
4 . In the

nontrivial integral component, we have bg ≡
4
p and cg =

p−bg
4 . In the non-integral components, we have

either fg ≡
4

2 and dg =
2p−fg

4 , hg = 4 or kg = 1, or mg = 2.

We have Z2(Cint) ( Cpt as fusion categories and Cint cannot be modular, so Z2(Cint) = 〈g〉 for some non-
trivial self-dual invertible g ∈ Cad. 〈g〉 is symmetric, so it is either Tannakian or sVec.

Case i: 〈g〉 = sVec
We have 〈g〉 = sVec = C′int, so g cannot stabilize any simple objects in Cint. Then by parity arguments, all
simple objects of dimension 2 or 4 must each be stabilized by exactly one nontrivial self-dual invertible simple
object. Thus all invertibles must be self-dual, and Cad must contain at least one simple object of dimension 2.

Case ii: 〈g〉 = Rep(Z2)
Let a tilde denote the number of simple objects of each dimension that are stabilized by g. Then a′ = 2+2b̃,

b′ = b−b̃
2 + 2c̃, and c′ = c−c̃

2 .

CZ2 is weakly integral, so g cannot stabilize any simple objects of dimension
√

2,
√
p, or

√
2p. We have five

subcases, given by the possible dimensions of the non-integral simple objects.

Case iia: m = 4
Then m′ = 2.

Case iib: h = 8
Then h′ = 4.

Case iic: k = 2
Then k′ = 1 or h′ = 4.

Case iid: h = 4 and k = 1
All invertibles must stabilize the only simple object of dimension 2

√
p, so h′ = 4.

Case iie: 4|f and d = 4p−f
4

Then f ′ = f
2 + 2d̃ and d′ = d−d̃

2 .

4 Future Work

It remains to fully classify the cases where a = 4. Once FPDim(C) = 16p has been fully classified, examining
the related case of FPDim(C) = 32p could illuminate generalizations to 2np.
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