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Abstract

The design for a topological quantum computer is based on anyon braiding. It
uses topology to protect quantum information against decoherence. We may model
the space-time trajectory of a system of n anyons with the n-strand braid group Bn.
Storing and manipulating information in the representation spaces of Bn is the foun-
dation of Topological Quantum Computation, thus understanding the representations
of these braid groups is an important problem. In this talk, we present results on
the classication of the unitarizability of low-dimensional irreducible representations of
B5. Using symbolic MatLab, we have determined that the Hecke algebra and reduced-
extended Burau representations of B5 are not unitarizable. The methods developed in
this paper may be easily adapted to any given representation for Bn of a given n.

1 Introduction & Background

An exciting development in the field of computer science is the theoretical possibility of
quantum computing (QC).

The instability of quantum wavestates used in QC poses a challenge to building a func-
tioning quantum computer. These states decay very rapidly, resulting in a loss of quantum
information called decoherence.

A proposed solution to the problem of decoherence is topological quantum computation
(TQC). A topological quantum computer uses anyons as quantum bits (qubits). Anyons are
quasi-particles whose space-time trajectories form the strands of the braid group Bn.

The braid group Bn is the group which contains all possible braidings of n-strands. The
group Bn is generated by the elementary generator σi for i ∈ {1, ..., n− 1} which twists the
ith and i+ 1th strands via the right-handed convention.

Definition 1.1. The braid group Bn is defined by the following generators and relations,
Bn = 〈σ1, σ2, ..., σn − 1|σiσi+1σi = σi+1σiσi+1 for all i ∈ {1, ..., n− 1} and σiσj = σjσi for all
|i− j| 6= 1〉

Topological quantum computing is based on using the representation spaces of Bn to
store and manipulate information [1].
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Definition 1.2. A representation of a group G is a pair (ρ, V ), where V is a d-dimensional
vector space and ρ is a group homomorphism from G to the collection of d × d invertible
matrices over C.

We have a particular interest in irreducible representations of Bn.

Definition 1.3. A representation is called irreducible if it contains no invariant subspaces.

Definition 1.4. A subspace W is called invariant if ρ(g)(W ) ⊆ W for all g ∈ G.

Many representations may be built from irreducible representations. Then we may think
of an irreducible representation as the fundamental building block of larger-more complex
representations.

The quantum wavestate of an anyon may be represented as a vector element of a complex
Hilbert space. We may manipulate this fundamental unit of quantum information by apply-
ing a unitary matrix. Understanding which irreducible representations of the braid group
are unitarizable is thus fundamentally important to TQC.

Definition 1.5. A representation ρ is unitarizable if there exists a Hermitian inner product
〈·|·〉A such that 〈ρ(g)v|ρ(g)w〉A = 〈v|w〉A for all g ∈ G and for all v, w ∈ V .

Let’s take a brief moment to develop some intuition for what it means for a matrix to be
unitary.
Example 1.1. Recall that we may recover the usual notion of the length of a vector v
from the standard inner product via 〈v|v〉. Let ρ(g) be a unitary matrix, then it follows
that 〈ρ(g)v|ρ(g)v〉 = 〈v|v〉. In other words, applying a unitary matrix to a vector does not
change the vector’s length. Unitary matrices in this context would correspond to rotations
of the vector v through some angle.
Next we introduce useful tools for the main analysis.

Definition 1.6. Let A be a matrix. We define the adjoint of the matrix ρ(g) via ρ(g)∗ =
A−1ρ(g)†A, where † denotes the complex conjugate transpose.

Theorem 1.1. Let v, w ∈ Cd and ρ(g) ∈ GLd(C). We have 〈ρ(g)v|ρ(g)w〉A = 〈v|w〉A if and
only if there exists a matrix A such that ρ(g)ρ(g)∗ = I.

We will make use of the Burau representation βn(t) : Bn → GLn−1(C[t±1]) which is given
in [2] by,

βn(t)(σ1) =

 −t 0
−1 1

0

0 In−3

 , βn(t)(σi) =


Ii−2 0 0

0
1 −t 0
0 −t 0
0 −1 1

0

0 0 In−i−2

 , β(t)(σn−1) =

 In−3 0

0
1 −t
0 −t



It should be noted that t 6= 0, or else this would not be a representation. We will also
make use of the standard representation sn(t) : Bn → GLn(C[t±1]) defined by
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s(t)(σi) =


Ii−1 0 0

0
0 t
1 0

0

0 0 In−(i−1)


Theorem 1.2. The standard representation is unitarizable when tt̄ = 1.

Proof. Let A = I, and assume tt̄ = 1, then

s(t)(σi)s(t)(σi)
∗ = s(t)(σi)A

−1s(t)(σi)
†A

= s(t)(σi)I
−1s(t)(σi)

†I

= s(t)(σi)s(t)(σi)
†

=


Ii−1 0 0

0
0 t
1 0

0

0 0 In−(i−1)



Ii−1 0 0

0
0 1
t̄ 0

0

0 0 In−(i−1)



=


Ii−1 0 0

0
tt̄ 0
0 1

0

0 0 In−(i−1)


= I

Now we are ready to develop the main result.

2 Main Results

Formanek et al. showed that all irreducible representations of dimension d ≤ n take the
following form: χ(c) ⊗ ρ(t), where t and c are parameters, χ(c) is a one-dimensional rep-
resentation defined by χ(c)(σi) = c, and ρ(t) is one of a finite list of given representations
[2].

Then in order to classify the unitarizability of representations of B5 with d ≤ 5, we need
to check each ρ(t) provided by Formanek et al. We have developed a process by which
unitarizability may be assessed, which is outlined bellow.

2.1 Set Up

Let χ(c) be the one-dimensional representation given by χ(c)(σi) = c ∈ C∗, and let ρ(t) be
a representation of the braid group B5 such that ρ̃(σi) = (χ(c) ⊗ ρ(t))(σi) has dimension
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d ≤ 5. Then ρ̃ is unitarizable if and only if there exists a matrix A such that

I = ρ̃(σi)(ρ̃(σi))
∗

= ρ̃(σi)A
−1ρ̃(σi)

†A

This is a matrix equation which we solve using symbolic MatLab. In order to accomplish
this, we will first simplify this expression by writing it only in terms of A, not in terms of A
and A−1. We will then express the equation in terms of ρ(t) and c.

We begin by multiplying from the right by A−1, then multiplying from the left by A, we
have I = Aρ̃A−1ρ̃†. If we multiply from the right by (ρ̃†)−1A, then we see that (ρ̃†)−1A = Aρ̃.
Subtracting (ρ̃†)−1A from both sides gives

0 = Aρ̃(σi)− (ρ̃(σi)
†)−1A (1)

By substituting ρ̃(σi) = (χ(c)⊗ ρ(t))(σi) into (1), we see that

0 = Aρ̃(σi)− (ρ̃(σi)
†)−1A

= A(χ(c)⊗ ρ(t))(σi)− ((χ(c)⊗ ρ(t))(σi)
†)−1A

Using the fact that (χ(c)⊗ ρ(t))(σi) = cρ(t)(σi), we have

= A(χ(c)⊗ ρ(t))(σi)− ((χ(c)⊗ ρ(t))(σi)
†)−1A

= A(cρ(t)(σi))− ((cρ(t)(σi))
†)−1A

= c(Aρ(t)(σi))−
1

c̄
((ρ(t)(σi))

†)−1A

We then multiply both sides of 0 = c(Aρ(t)(σi))− 1
c̄
((ρ(t)(σi))

†)−1A by c̄, which gives.

0 = cc̄(Aρ(t)(σi))− ((ρ(t)(σi))
†)−1A (2)

This equation may now be solved symbolically given ρ(t)(σi), thereby determining the uni-
tarizability of ρ̃. It is clear that if c is on the unit circle then ρ̃ is unitarizable if and only
if ρ(t) is unitarizable. However, the existence of some non-unitarizable ρ(t) and appropriate
choice of c such that ρ̃ is unitarizable is not known.

We now outline our analysis of the unitarizability of ρ̃ given ρ(t).

2.2 Solution

Let ρ(t1)1 = H5(t1) and ρ(t2)2 = β̂5(t2) be representations of B5 with dimensions d1 = 5 and
d2 = 3 respectively. Let H be the Hecke algebra representation, given in [2] by

H5(t1)(σ1) =


1 0 0 0 −t1
0 −t1 0 0 0
0 −1 1 0 0
0 −1 0 1 0
0 0 0 0 −t1

 , H5(t1)(σ2) =


−t1 0 0 0 0
0 1 −t1 0 0
0 0 −t1 0 0
−1 0 0 1 0
−1 0 0 0 1


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H5(t1)(σ3) =


1 0 0 −t1 0
0 −t1 0 0 0
0 −1 1 0 0
0 0 0 −t1 0
0 −1 0 0 1

 , H5(t1)(σ4) =


−t1 0 0 0 0
0 1 0 0 −t1
−1 0 1 0 0
−1 0 0 1 0
0 0 0 0 −t1


Note both that this representation is irreducible provided t1 is not a root of (x2 + x +

1)(x2 + 1), and that if t1 = 0 then our matrices no longer are invertible and as such do not
define a representation.
Let t2 be a root of x4 + x3 + x2 + x+ 1, then β̂5(t2) is the irreducible representation defined
in [2] by β̂5(t2)(σi) = β4(t2)(σi) for i ∈ {1, 2, 3} and β̂5(t2)(σ4) = I − PQ, where

P =

0
0
t2

 , Q = t2(1,−(1 + t2), (1 + t2 + t22)).

We may evaluate the unitarizability of ρ̃j = χ(c)⊗ ρ(tj)j for j = 1, 2 using the MatLab
code designed to evaluate (1), which may be found in the appendix. This code is able to
directly check the unitarizability of a representation given a value of c and tj. Otherwise the
code outputs a coefficient matrix that way may use to solve for the entries akl of A in terms
of tj and c.
To simplify the analysis, we will show that our representations are not unitarizable by show-
ing that the matrix A has a zero row.

2.2.1 The Hecke Algebra Representation H5(t1)

Proof. Assume t1 is not a root of (x2 + x+ 1)(x2 + 1). The output of our code for j = 1 is a
100× 25 coefficient matrix with each row is given by an entry of the equation matrix given
by (1) for all σi. We evaluate the unitarizability of ρ̃1 via the following equations recovered
from the rows of the coefficient matrix:

(cc̄− 1)a41 = 0, (3)

(cc̄− 1)a42 = 0, (4)

(cc̄− 1)a43 = 0, (5)

(cc̄− 1)a44 = 0, (6)

(cc̄− 1)a45 = 0 (7)

From equations (3-7) we see that either cc̄ = 1 or a41 = a42 = a43 = a44 = a45 = 0. If
our representation is to be unitarizable, A can not have any zero rows, so we conclude that
cc̄ = 1. Then

0 = cc̄(AH5(t1)(σi))− ((H5(t1)(σi))
†)−1A (8)

= (AH5(t1)(σi))− ((H5(t1)(σi))
†)−1A (9)
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Thus, ρ̃1 = χ(c)⊗H5(t1) is unitarizable if and only if H5(t1) is unitarizable.
Using cc̄ = 1, we simplify our original coefficient matrix, and produce the following equations:

−t1a22 = 0 (10)

−t̄1a23 = 0 (11)

−t̄1a24 = 0 (12)

a24 + (
1

t̄1
+ 1)a34 = 0 (13)

a25 + (
1

t̄1
+ 1)a35 = 0 (14)

−t1a31 − (t1 + 1)a34 = 0 (15)

−t1a31 − (t1 + 1)a35 = 0 (16)

−(t1 + 1)a21 − a24 − a25 = 0 (17)

From these equations we will show that A must have a zero row.
Since t1 6= 0, it follows from (10 − 12) that a22 = a23 = a24 = 0. Since a24 = 0, we obtain
( 1
t̄1

+ 1)a34 = 0 from (13). Then either t1 = −1 or a34 = 0. Since our code can easily check
the unitarizability of a representation given c and t1, we simply input t1 = −1 and see that
it is not unitarizable.
Thus we may assume t1 6= −1, and conclude that a34 = 0. By applying this fact to (15), we
see that −t1a31 = 0. We then apply this result to (16), and conclude that a35 = 0. From
this fact we get a25 = 0 from (14). Finally, since a24 = a25 = 0, and since t1 6= −1, we see
that a21 = 0 from (17). Thus a21 = a22 = a23 = a24 = a25 = 0.
Therefore A has a zero row, and we see thatH5(t1), and thus χ(c)⊗H5(t1), is not unitarizable.

2.2.2 The Reduced-Extended Burau Representation β̂5

Proof. Assume t2 is a root of f(t2) = x4 + x3 + x2 + x + 1. For j = 2 our code provides
a 36× 9 coefficient matrix, where each row corresponds to an entry of the equation matrix
given by (1) for each σi. From this matrix, we evaluate the unitarizability of χ(c) ⊗ β̂(t2)
via the following equations:

(cc̄− 1)a11 = 0, (18)

(cc̄− 1)a12 = 0, (19)

(cc̄− 1)a13 = 0, (20)

Thus either A has a zero row or cc̄ = 1. If cc̄ = 1, then we need only check the unitarizability
of β̂(t2). Using this fact, we simplify our coefficient matrix and evaluate the following
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equations: (
1

t̄2
4 + t̄2

3 + t̄2
2 − 1

+ 1

)
a31 − t22a33 = 0 (21)(

1

t̄2
4 + t̄2

3 + t̄2
2 − 1

+ 1

)
a32 + (t32 + t22)a33 = 0 (22)(

1

t̄2
4 + t̄2

3 + t̄2
2 − 1

− (t42 + t32 + t22) + 1

)
a33 = 0 (23)

From (23), we have either a33 = 0 or 1
t̄2

4+t̄2
3+t̄2

2−1
= (t42 + t32 + t22)− 1. Solving this for t2 we

have t2 = 0,−1
2
±
√

3
2
i,−1.2409, 0.8718, but since none of these are roots of f(t2) we conclude

that a33 = 0.
From these assumptions, it quickly follows from (21) and (22) that a31 = a32 = a33 = 0.
Thus A has a zero row, and we conclude that β̂(t2) is not unitarizable. Therefore χ(c)⊗ β̂(t2)
is not unitarizable.

3 Discussion

3.1 Summary & Next Steps

Using a combination of numerical and symbolic MatLab, we have successfully determined
the unitarizability of H5(t1) and β̂(t2). Our methods hinge on a simple script and are easily
adapted to other representations. We have thus demonstrated how any similar representa-
tion’s unitarizability may be evaluated.
Since Formanek et al. showed that there are only a finite number of representation classes
up to equivalence-it is thus possible to use our approach to fully classify the unitarizability
of the representations of the braid group with a given number of strands.
Using these methods, collaboration with another researcher has resulted in a full classification
of the unitarizable representations of B5 with d ≤ 5, provided bellow.

1. For d = 1, all unitarizable representations are one-dimensional and of the form χ(c)
where cc̄ = 1.

2. For d = 2, there are no irreducible unitary representations.

3. For d = 3, there are no irreducible unitary representations.

4. For d = 4, we have unitarizable representations of the Burau type χ(c) ⊗ β(t), when
cc̄ = 1 and the Burau representation is unitary. The unitarizability of the Burau is
well-understood and given in [3].

5. For d = 5, we have unitarizable representations of standard type χ(z)⊗ s(t).

For our next steps, we will check the unitarizability for representations of B4, B6, B7, and
B8. Once this is done, then a full classification of unitarizable representations of Bn will be
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more easily attainable since after n = 8 we only have the Burau, reduced-extended Burau
and standard representation types.

Since the unitarizability of the Burau and the standard representations is already known,
we only need to analyze the unitarizability of the reduced-extended Burau.
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Appendix

The MatLab script used for this project is provided bellow:

%Hecke algebra/burau hat reps of B5

syms c

t = 2

%hecke

XH = sym(’x’, 5);

H_1 = [1,0,0,0,-1;

0,-1,0,0,0;

0,-1,1,0,0;

0,-1,0,1,0;

0,0,0,0,-1];

H_2 = [-1,0,0,0,0;

0,1,-1,0,0;

0,0,-1,0,0;

-1,0,0,1,0;

-1,0,0,0,1];

H_3 = [1,0,0,-1,0;

0,-1,0,0,0;

0,-1,1,0,0;
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0,0,0,-1,0;

0,-1,0,0,1];

H_4 = [-t,0,0,0,0;

0,1,0,0,-t;

-1,0,1,0,0;

-1,0,0,1,0;

-1,0,0,0,1];

%burau

XB = sym(’x’, 3);

Bh_1 = [-t,0,0;

-1,1,0;

0,0,1];

Bh_2 = [1,-t,0;

0,-t,0;

0,-1,1];

Bh_3 = [1,0,0;

0,1,-t;

0,0,-t];

Bh_4 = eye(3) - ([0;0;t]*[t,-(t+t^2),t+t^2+t^3]);

%Need empty vectors to fill with entries of Yi

%Burau hat

VB1 = [];

VB2 = [];

VB3 = [];

VB4 = [];

%hecke

VH1 = [];

VH2 = [];

VH3 = [];

VH4 = [];

%variable vector

%burau hat

xb = [];

%hecke

xh = [];

%X has to satisfy the following equation matrices

%hecke

YH1 = (c*conj(c))*XH*H_1 - (H_1^(-1)’)*XH == 0;

YH2 = (c*conj(c))*XH*H_2 - (H_2^(-1)’)*XH == 0;

YH3 = (c*conj(c))*XH*H_3 - (H_3^(-1)’)*XH == 0;
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YH4 = (c*conj(c))*XH*H_4 - (H_4^(-1)’)*XH == 0;

%burau

YB1 = (c*conj(c))*XB*Bh_1 - (Bh_1^(-1)’)*XB == 0;

YB2 = (c*conj(c))*XB*Bh_2 - (Bh_2^(-1)’)*XB == 0;

YB3 = (c*conj(c))*XB*Bh_3 - (Bh_3^(-1)’)*XB == 0;

YB4 = (c*conj(c))*XB*Bh_4 - (Bh_4^(-1)’)*XB == 0;

%This puts the above equation matrices in vector form

%hecke

for i= 1:5

for j = 1:5

VH1 = [VH1 YH1(i,j)];

VH2 = [VH2 YH2(i,j)];

VH3 = [VH3 YH3(i,j)];

VH4 = [VH4 YH4(i,j)];

xh = [xh XH(i,j)];

end

end

%burau

for i= 1:3

for j = 1:3

VB1 = [VB1 Y1(i,j)];

VB2 = [VB2 Y2(i,j)];

VB3 = [VB3 Y3(i,j)];

VB4 = [VB4 Y4(i,j)];

xb = [xb X(i,j)];

end

end

%master equation vector

%hecke

VH = [VH1 VH2 VH3 VH4];

%burau

VB = [VB1 VB2 VB3 VB4];

%convert all equations from equation matrices Yi into a single coefficient

%matrix

%hecke

MH = equationsToMatrix(VH,xh);

%burau

MB = equationsToMatrix(VB,xb);

%reduced row echelon form of above coefficient matrix

SH = rref(MH);

SB = rref(MB);

%if t was numerical, we need only check S for the solution, if the only

%solution is the zero matrix, the rep is not unitarizable

10



%variable entries of X are in the following order:

%[ x1_1, x1_2, x1_3, x1_4, x1_5, x2_1, x2_2, x2_3, x2_4, x2_5, x3_1, x3_2, x3_3, x3_4, x3_5, x4_1, x4_2, x4_3, x4_4, x4_5, x5_1, x5_2, x5_3, x5_4, x5_5]

%x(i) is the variable corresponding to the ith columb of S
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