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Abstract

Place cells are neurons found in some mammals that fire based on the animal’s
location in their environment. Each place cell fires in an approximately convex region
called its receptive field, a subset of a Euclidean space. From the intersections of these
receptive fields, a corresponding binary code is extracted. This leads us to ask: is every
binary code realizable by convex sets in a Euclidean space? We answer this question in
the affirmative via a construction for a convex realization of an arbitrary code C in Rd−1,
where d is the number of nonempty codewords in C. We then explore the relationship
between a code and its minimal embedding, the smallest dimension in which it is convex
realizable. We provide a sufficient condition for the minimal embedding dimension of
a convex open code in dimension 2 and conclude by proving that, in some cases, the
dimension of the construction is the minimal embedding dimension of a code.

1 Introduction
Place cells were first discovered in 1971 by John O’Keefe, an accomplishment for which he
shared the 2014 Nobel Prize in Physiology or Medicine. Place cells are neurons that fire
when an animal is in a particular place relative to their environment and thus allow the
animal to identify where it is spatially. These neurons fire in approximately convex regions
called receptive fields. From the intersections of the receptive fields, we obtain a binary code
called the neural code [3].

Definition 1. A neural code on n neurons is a set of binary strings C ⊆ {0, 1}n. The
elements of C are called codewords.

For simplicity, we will refer to a codeword by its support set. For example, the codeword
011 will be referred to as 23.

Definition 2. A code C ⊆ {0, 1}n is convex if there exists a set of convex sets, not necessarily
open or closed, U = {U1, ..., Un} in Rd such that C = C(U) := {σ ∈ [n] | Uσ \

⋃
j∈[n]\σ Uj 6= ∅}.

If such U exists, then we say that C is convex realizable. The minimal d such that C is convex
realizable in Rd is called the minimal embedding dimension.
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Definition 3. If a code C is convex realizable by a set U and each Ui ∈ U is open convex,
we say that C is open convex. Similarly, if a code C is convex realizable by a set U and each
Ui ∈ U is closed convex, we say that C is closed convex.

Definition 4. Let X1, X2, . . . , Xn be subsets of Rd. The convex hull of {X1, X2, . . . , Xn} is
the smallest convex set in Rd containing {X1, X2, . . . , Xn}, denoted by conv{X1, X2, . . . , Xn}.

Example 1. Let X1 = (2.5, 1), X2 = (1, 3), and X3 = (−2,−1) be points in R2. Then,
conv(X1, X2, X3) = conv{(2.5, 1), (1, 3), (−2,−1)} is depicted below:

X1

X2

X3

One of the primary goals of this area of research is to determine which codes are convex
realizable. Much work has been done on determining which codes are open convex and closed
convex [3] [4]. Cruz et al. showed that all max-intersection complete codes are both open
and closed convex [2]. Another area of significant interest has been the minimal embedding
dimension of convex codes, that is, the smallest dimension for which there exists a realization
of the code. Mulas and Tran completely characterized the minimal embedding dimensions
of open connected codes [5]. However, less work has been done investigating convex codes
without regard to openness nor closedness.

If a code is open convex or closed convex, then by definition it is convex so the set of
codes which are only convex contains all codes which are open convex and closed convex.
Some have speculated that all locally great codes are convex [1] while others have speculated
that in fact all codes are convex. We will show that every neural code is convex. That is,
every neural code is realizable by a set U where each Ui ∈ U is convex but not necessarily
open or closed.

2 Main Results
Our primary result is a construction of a convex realization of an arbitrary code C in Rd−1

where d is the number of nonempty codewords in C. We will begin with two examples of the
construction, followed by a proof of the construction in Theorem 1. Following this result, the
remainder of the paper explores the relationship between a code and its minimal embedding
dimension. In Theorem 2, we give a sufficient condition for the the minimal embedding
dimension of a convex open code to be 2. Finally, we conclude by proving in Theorem 3
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that, for a certain class of codes, the dimension of the construction in Theorem 1 is the
minimal embedding dimension of the code.

Example 2. Consider the code C = {∅, 12, 34, 123}. Figure 1 displays the convex sets
U1, U2, U3, and U4 which realize C as well as the V i

j that are used in the construction of the
Ui’s (see proof of in Theorem 1).

Figure 1: Constructing a convex realization of the code C = {∅, 12, 34, 123}, as in the proof
of Theorem 1.
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In the next example, we construct a realization of C = {∅, 123, 124, 134, 234} in R3.
A later result will prove that 3 is in fact the minimal embedding dimension of this code
(Theorem 3).

Example 3. Consider the code C = {∅, 123, 124, 134, 234}. Figure 2 displays the convex
sets U1, U2, U3, and U4 which realize C as well as the V i

j that are used in the construction of
the Ui’s (see proof of in Theorem 1).
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Figure 2: Constructing a convex realization of the code C = {∅, 123, 124, 134, 234}, as in the
proof of Theorem 1.
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Theorem 1. Every code is convex realizable. Moreover, the minimal embedding dimension
of a code with m nonempty codewords is at most m− 1.

Proof. We will give a construction for a convex realization of an arbitrary code.

Let C be an arbitrary code on n neurons where C \ {∅} = {σ1, σ2, . . . σk}. Let {e1, ..., ek−1}
be the standard basis for Rk−1.

1. Take σ1. Then for every j ∈ [n], if j ∈ σ1, define V 1
j to be the closed point at the

origin.
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V 1
j

Otherwise, define V 1
j = ∅.

2. Next take σ2. Then for every j ∈ [n], if j ∈ σ2, define V 2
j to be conv{0, e1} − {0}.

V 2
j

e1

Otherwise, define V 2
j = ∅.

3. Next take σ3. Then for every j ∈ [n], if j ∈ σ3, define V 3
j to be conv{0, e1, e2}, but

open along its intersection with conv{0, e1}.

V 3
j

e1

e2

Otherwise, define V 3
j = ∅.

4. Continuing in this way, for all j ∈ [n], if j ∈ σm, define V m
j to be conv{e1, e2, . . . , em−1},

but open along its intersection with conv{0, e1, e2, . . . em−2}. Otherwise, define V m
j = ∅.

Notice that by construction, V m
j does not intersect any V s

l constructed in a previous
step where s < j.

5. When this has been completed for all σj ∈ C, define

Uj =
⋃
i∈[k]

V i
j

for all j ∈ [n]. We claim that U = {U1, U2, . . . , Un} is a convex realization of our code in
Rk−1. Note that for each i ∈ [k], the codeword σi is realized by

⋃
j∈σi V

i
j . Furthermore,

for all i ∈ [k], V i
j are disjoint, so no additional codewords are realized. Thus U is a

realization of C. Furthermore, a face cannot affect the convexity of n-simplex unless the
face itself is not convex. Similarly, a face cannot affect the convexity of a n−1-simplex
unless the face itself is not convex. Thus, since each V i

j is convex by construction, each
Uj in our construction must be convex.

Next, we prove a result similar to that of Raffaella and Ngoc [5]. Rafaella and Ngoc
showed that the minimal embedding dimension of an open connected code is at most three.
Here, we give a sufficient condition for a convex open code to have a minimal embedding
dimension of 2.
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Definition 5. Let C be convex open and U = {U1, U2, . . . , Un} be a convex realization of C.
Then, smallest dimension d in which C is realizable by convex open Ui is its minimal open
embedding dimension. Similarly, if C is convex closed and U = {U1, U2, . . . , Un} is a convex
realization of C, then smallest dimension d in which C is realizable by convex closed Ui is its
minimal closed embedding dimension.

Theorem 2. Suppose C is convex open and has a minimal open embedding dimension of 2.
Then the minimal embedding dimension of C is 2.

Proof. Note that it is equivalent to prove that, if C has a convex realization in dimension 1,
then C has an open convex realization in dimension 1.

Let C be a neural code on n neurons with minimal embedding dimension d = 1 and let
U = {I1, ..., In} be a convex realization of C in dimension 1 where each Ik as an interval on
the real number line. We will denote the left and right endpoints of an interval Ik by ak and
bk respectively. Define

ε = min({|ai − aj|, |bi − bj| | |ai − aj| > 0, |bi − bj| > 0} ∪ {|ai − bj| | |ai − bj| > 0})

In other words, ε is the smallest non zero distance between any two endpoints. Next, we will
modify each interval in U to obtain a new set U ′ comprised of all open intervals which still
realize C. For every Ik ∈ U , the following endpoint conditions of Ik give a construction for a
modified interval, denoted I ′k:

• If ak ∈ Ik, let ak − ε/3 be the new, open endpoint.

• If ak 6∈ Ik, let ak + ε/3 be the new, open endpoint.

• If bk ∈ Ik, let ak + ε/3 be the new, open endpoint.

• If bk 6∈ Ik, let ak − ε/3 be the new, open endpoint.

Essentially, shrink Ik at open endpoints and extend Ik at closed enpoints. After completing
this process for every Ik ∈ U , let U ′ := {I ′k = (a′k, b

′
k) | Ik ∈ U}. Note that after our

modification of the intervals, the distance between two endpoints can change by at most
2ε/3. By the construction of ε, the only possible points at which U ′ will have additional
codewords or missing codewords as compared to U is where U had two intervals with equal
endpoints, or a single interval with equal endpoints (ie. a single point).

Suppose ak = bj, ak ∈ Ik and bj ∈ Ij. Then I ′k ∩ I ′j will be the interval (bj, ak), thus
preserving the zone in U that had existed exactly at the point shared by ak and bj. All
other cases follow similar logic. Thus U ′ is an open convex realization of C in dimension 1.
Note that since in one dimension open convex and open connected sets are identical, this
implies that any set that is convex realizable in 1 dimension is open connected realizable in
1 dimension.

Our final main result, Theorem 3, will show that, in some cases, the dimension of the
construction in Theorem 1 is the minimal embedding dimension of a code. Before this result,
we provide a few definitions and two results, Lemma 1 and Lemma 2, which simplify the
proof of Theorem 3.
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Definition 6.
Uσ :=

⋂
i∈σ

Ui

Definition 7. Let Cn be the code on n neurons containing exactly all of the codewords of
length n− 1,

Cn := {σ ⊆ [n] | |σ| = n− 1}

Next, we will look more closely at the class of codes, Cn as defined above. Note that |Cn| =(
n
n−1

)
= n for every n. In Theorem 3, we prove that for all n, Cn has minimal embedding

dimension n−1, thus showing that the construction in Theorem 1 cannot always be improved
in terms of dimension.

We begin with an example on 4 neurons: Let C4 = {123, 124, 134, 234} and let U =
{U1, U2, U3, U4} be a realization of C4. Then, there exist the following points: a123 ∈ U123,
a124 ∈ U124, a134 ∈ U134, and a234 ∈ U234. Next, we will look at the convex hull of
{a123, a124, a134}. Note that by the convexity of each Ui, the edge between any aσ and
aτ must be contained in Uσ∩τ . For example, the line segment between a123 and a124 must be
contained in U12. In the figure below, we label each edge with the Uσ containing that edge.
Also, note that the entire convex hull must be contained in U1.

a123

a124a134

U13 U12

U14

U1

Suppose for contradiction that a234 is coplanar with the other three aσ. Note that a234 cannot
intersect U1 as that would imply that 1234 ∈ C4. Thus a234 cannot be in conv{a123, a124, a134}.
Placing a234 in an arbitrary location outside of conv{a123, a124, a134} but still coplanar with
the aσ, we get the following:

a123

a124a134

a234

U1234

U34

By convexity, the line between the points a134 and a234 must be contained in U34. However,
this line intersects the edge that is contained in U12. Thus, the point of intersection must
be contained in U1234, resulting in a contradiction since 1234 6∈ C4. Note that such a contra-
diction occurs regardless of where the point a234 is placed. Our proof will generalize these
ideas. First we introduce a definition and prove two supporting results.

Definition 8. A set of points {a1, a2, . . . an} in Rn−1 are points in general linear position in
Rn−1 if no hyperplane in Rn−1 contains more than n− 1 points.
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Lemma 1. Let a1, a2, . . . , an be points in Rn−2 where n ≥ 4. Let H be any hyperplane that
separates conv{a1, a2, . . . , an−1} from an. Define ãi for every i ∈ [n−1] to be the intersection
point of the line connecting ai and an with H. If a1, a2, . . . , an are points in general linear
position in Rn−2, then ã1, ã2, . . . , ãn−1 are points in general linear position in H.

Proof. We will proceed by induction on n.
Base Case: Let n = 4. Let a1, a2, a3, and a4 be points in general linear position in R2.

Consider a line L that separates conv{a1, a2, a3} from a4. Then, define ãi for i ∈ [3] to be
the intersection of the line connecting ai and a4 with L. An example of this projection is
depicted below. Suppose for contradiction that ãi = ãj for some i, j ∈ [3], i 6= j. This
implies that in R2, ai, aj, and a4 are collinear, contradicting that they are points in general
linear position in R2. Thus, ã1, ã2, and ã3 must be in general position in L.

a1

a2

a3 a4

L

ã2

ã1

ã3

Inductive Step: Assume that our claim holds for all k < n. Let a1, a2, . . . , an be points in
general linear position in Rn−2. LetH be any hyperplane that separates conv{a1, a2, . . . , an−1}
from an. Define ãi to be the intersection point of the line connecting ai and an with H. Sup-
pose for contradiction that ã1, ã2, . . . , ãn−1 are not in general linear position in H.

Our inductive hypothesis implies that ã1, ã2, . . . , ãn−2 are in general linear position in H.
Thus, our contradiction must arise from a subset of at least n − 2 of the ãi that includes
ãn−1. Call this set S̃. Then, all of the points in S̃ are coplanar in a plane of H. Define
S = {ai | ãi ∈ S̃}. Then, we get that an and all of the points in S lie in the same
hyperplane of Rn−2, contradicting that the points were in general linear position in Rn−2.
Thus, ã1, ã2, . . . , ãn−1 are in general linear position in H.

Lemma 2. Assume n ≥ 3 and let a1, a2, . . . , an be points in general linear position in
Rn−2. Assume that an 6∈ conv{a1, a2, . . . , an}. Then, there exists a partition B1 ∪ B2 =
{a1, a2, . . . , an−1} such that there exist points t ∈ conv(B1) and z ∈ conv(B2) with t 6= z,
such that the three points, t, z, and an, are collinear.

Proof. We will proceed by induction on n.
Base Case: Let n = 3. Then, a1, a2, and a3 are points in general linear position in R1.

Let B1 = {a1} and B2 = {a2}. Then, conv(B1) = {a1} and conv(B2) = {a2}. In R1, all
points are collinear so if we let t = a1 and z = a2, we get that t, z, and a3 are collinear. Since
a1, a2, and a3 are points in general linear position in R1, we know that a1 6= a2 so t 6= z,
completing our claim.
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Inductive Step: Suppose our claim holds for all k < n.
Suppose a1, a2, . . . , an are points in general linear position in Rn−2. Let H be any hy-

perplane in Rn−2 that separates conv{a1, a2, . . . , an−1} from an. Then, define ãi for all
i ∈ [n− 1] to be the intersection point of the line connecting ai and an with H. By Lemma
1, we know that ã1, ã2, . . . , ãn−1 are in general linear position in H. Then, by our induc-
tive hypothesis, there exist sets B̃1, B̃2 which partition the set {ã1, ã2, . . . , ãn−2} such that
there exist points t̃ ∈ conv(B̃1), z̃ ∈ conv(B̃2) and t̃ 6= z̃ where t̃, z̃, and ãn−1 are collinear.
Without loss of generality, assume that ãn−1 is closer to z̃ than t̃. Then, define the sets
B1 = {ai | ãi ∈ B̃1} ∪ {an−1} and B2 = {ai | ãi ∈ B̃2}. We claim that B1 and B2 satisfy our
claim.

First, note that z̃ ∈ conv(B̃1 ∪ {ãn−1}) by construction, since z̃ ∈ conv{t̃, ãn−1}. Extend
a line, Lz between an and z̃. Then, all points on Lz project to z̃ by our definition of this
projection. Moreover, since z̃ ∈ conv(B̃1∪{ãn−1}), Lz must intersect conv(B1), implying that
there exists a point z ∈ conv(B1) such that the projection of z onto H is z̃. Similarly, since
z̃ ∈ conv(B̃2), Lz must intersect conv(B2), implying that there exists a point s ∈ conv(B2)
such that the projection of z onto H is z̃. Thus, s, z, and an all lie in Lz, meaning they are
collinear. Lastly, since B1 and B2 form a partition of the n− 1 points in R2, conv(B1) and
conv(B2) are disjoint, giving us that s 6= z, thus proving our claim.

Theorem 3. Let Cn be a code on n neurons as defined above. Then, the minimal embedding
dimension of Cn is n − 1. That is, the embedding dimension from Theorem 1 is exactly the
minimal embedding dimension of Cn for every n.

Proof. We will proceed by induction on the number of neurons.
Base Case: Let n = 2. Then, C2 = {1, 2}. Let U = {U1, U2} be a convex realization of

C2. Note that U1 and U2 cannot have a point in common since 12 6∈ C2, so, by Theorem 1,
C2 has minimal embedding dimension 1.

Inductive step: Assume for every k < n, the code Ck has minimal embedding dimension
k − 1.

Write Cn = {σ1, σ2, . . . σn} where for each i ∈ [n], σi = [n]\{i}. Assume for contradiction
that {U1, U2, . . . , Un} is a convex realization of Cn in Rn−2. Then there exist a collection
of points a1, a2, . . . , an such that ai ∈ Uσi for all i ∈ [n]. Let A = {a1, a2, . . . , an−1}. We
will begin by showing that a1, a2, . . . , an are in general linear position in Rn−2 and an 6∈
conv{a1, a2, . . . , an−1} so that we can apply Lemma 2.

First, looking at σ1, σ2, σ3, we can view these codewords as copies of the elements of C3.
That is, we can view 2345 . . . n, 1345 . . . n, and 1245 . . . n as copies of the codewords 23, 13,
and 12. Then, by our inductive hypothesis, a1, a2, and a3 cannot be collinear. In this way,
for every k < n, any subset of k of our ai cannot be contained in a (k− 2) dimensional plane
of R2. This implies that a1, a2, . . . , an must be in general linear position in Rn−2.

Next, by our construction of the ai, for every i ∈ [n − 1], ai ∈ Un. By convexity of Un,
we get that conv(A) ⊆ Un. Then, looking at an, for every j ∈ [n− 1], an ∈ Uj. Thus, if an ∈
conv(A), then an ∈ Un, implying that the 123 . . . n ∈ Cn which is a contradiction. Thus,
an 6∈ conv(A).

Applying Lemma 2, there exists a partitionB1 = {b1, b2, . . . , bk}, B2 = {bk+1, bk+1, . . . , bn−1}
of {a1, a2, . . . , an−1} and there exist points t ∈conv(B1) and z ∈conv(B2) such that t, z, and
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an are collinear where an is closer to z.
Recall from above that for each i ∈ [n], σi = [n]\i and ai ∈ Uσi . Then, for each bi ∈ B1,

there exists a codeword τi ∈ Cn such that bi ∈ Uτi . Similarly, for each bj ∈ B2, there exists a
codeword ζj ∈ Cn such that bj ∈ Uζj . Define

τ =
k⋂
i=1

τi ζ =
n−1⋂
j=k+1

ζj

Then, by the convexity of each Ui, we get that conv(B1) ⊆ Uτ and conv(B2) ⊆ Uζ . Since
B1 and B2 partition A and σn is the only element of Cn not contained in A, we get that
τ ∩ ζ = {n}. By our constructions of τ and ζ, we have that |τ |+ |ζ| = n+1. However, since
the intersection of τ and ζ is {n}, then |τ ∪ ζ| = n, thus implying that τ ∪ ζ = [n].

To finish the proof, since t ∈ conv(B1) ⊆ Uτ , by convexity of the Ui, the line between t
and an must be contained in

⋂
i∈τ∩σn Ui. Since z is between t and an, then z ∈

⋂
i∈τ∩σn Ui.

However, z ∈ conv(B2) ⊆ Uζ so z ∈ Uζ ∩
(⋂

i∈τ∩σn Ui

)
. This gives us that the codeword

ζ ∪ (τ ∩ σn) is realized at z. By our constructions of τ and ζ, we get that ζ ∪ (τ ∩ σn) = [n],
so the codeword 123 . . . n is realized at z, contradicting our assumption that the codeword
123 . . . n 6∈ Cn. Thus, Cn is not convex realizable in Rn−2. By Theorem 1, Cn has a realization
in dimension n− 1. Thus, the minimal embedding dimension of Cn is n− 1.

Corollary 1. The minimal embedding dimension of all neural codes has no upper bound.

Proof. This follows immediately from Theorem 3.

3 Discussion
We have proven by construction that every code C has a convex realization in Rd−1 where
d is the number of nonempty codewords in C. While the application of this construction in
place cells might not be realistic because of the potential for high dimension, a few related
questions follow naturally which could lead to more insight into the behavior of place cells.
Since we have shown that every code is convex realizable, can we determine the minimal
embedding dimension? If a code is convex open or closed, when is the minimal open or
closed embedding dimension strictly greater than the minimal embedding dimension?

Our results in Theorems 2 and 3 provide some framework for answering these questions.
Theorem 2 provides sufficient conditions for the minimal open embedding dimension of a
code to be equal to the minimal embedding dimension in dimensions 1 and 2. Theorem 3
implies that, in certain cases, the dimension of the construction in Theorem 1 is exactly the
minimal embedding dimension. Moreover, Theorem 3 implies that there is no upper bound
on the minimal embedding dimensions of all codes.
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