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Abstract

Place cells represent certain animals’ location relative to their surrounding environ-
ment. From the receptive fields of these cells, we build neural codes. There is particular
biological interest in studying which neural codes can be represented by convex recep-
tive fields. One such type of convex code is the max intersection-complete code. In
order to better understand neural codes, we associate to each an ideal, called the neural
ideal. Here we study the canonical form of the neural ideal in the interest of finding a
signature for max intersection-complete codes. We provide an algorithm for determin-
ing maximal codewords given a canonical form, and provide sufficient conditions for a
code to be non-convex based on its canonical form.

1 Introduction
In 2014 John O’Keefe was a recipient of the Nobel Prize in Physiology or Medicine for his
discovery in 1971 of place cells, neurons which signal to an animal its location relative to
its environment [2]. Each neuron fires in a convex region of the environment referred to
as a place field, or a receptive field. We build a neural code from these place fields and
their intersections. Because these place fields appear as convex regions biologically, there is
interest in studying which neural codes can be realized convexly.

In [5], Curto et al. developed an algebraic structure for studying neural codes. From
a neural code we build its corresponding neural ideal, which has as a minimal generating
set the canonical form. Algorithms for determining the canonical form of a neural ideal can
be found in [5], [7]. The canonical forms of simplicial complexes and intersection-complete
codes were classified in [4].

In [3], Cruz et al. presented the following theorem:

Theorem 1. Suppose C is a max intersection-complete code. Then C is both open convex
and closed convex.

This theorem, along with Curto et al.’s work with the canonical form motivates our goal
of finding an algebraic signature in the canonical form for max intersection-complete codes.
Max intersection-complete codes make up a broad category of convex codes, and such a
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signature would decrease computational time needed to determine whether or not a code is
max intersection-complete and thus convex open.

In this paper, we provide an algorithm that identifies the facets of a code given its
corresponding canonical form. We also state a necessary condition for a canonical form to
correspond to a max-intersection complete code. We use definitions from [5], and use the
NeuralIdeals package presented in [7] in order to calculate the canonical forms of codes
throughout [1], [6].

2 Background
In this section we define those terms which give us the necessary algebraic structures used
to describe neural codes.

Definition 1. A neural code C on a set of n neurons is a set of subsets of [n]. The elements
of C are called codewords. We say that a codeword σ ∈ C is a maximal codeword, or facet,
of C if σ is not properly contained in any other codeword in C. For simplicity, we write a
codeword {s1, . . . , sm} as s1 . . . sm.

Definition 2. A realization of a code C is a collection of sets U = {U1, . . . , Un} where
Ui ∈ Rd such that C = C(U) := {σ ∈ [n] | Uσ \

⋃
j∈[n]\σ Uj 6= ∅}. A Ui ∈ U is a place field of

the neuron i.

We define Uσ :=
⋂
i∈σ Ui for σ ∈ [n].

By convention, we assume that every code contains ∅. Codes which contain all possible
intersections of codewords are called intersection-complete codes. Codes which contain all
possible intersections of facets are called max intersection-complete codes. In this work, we
are interested in max intersection-complete codes.

Example 1. Let C = {123, 124, 12, 13, 14, ∅}. The facets of C are {123, 124}, and 123∩124 =
12 ∈ C. Thus C is max intersection-complete however, 12, 13 ∈ C but 12 ∩ 13 = 1 /∈ C, so
C is not intersection-complete. Figure 1 depicts a realization of the receptive fields for this
code.

Definition 3. The maximal code on n neurons is defined to be Cmax(n) := {σ : σ ⊆ [n]}.
Note that the maximal code contains 2n codewords and for every code C on n neurons,
C ⊆ Cmax(n).
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Figure 1: The top four images show the receptive fields U1, . . . , U4. The last image shows
the receptive field code C(U), with codewords labelled.

In order to better understand the algebraic structure of neural codes, we study the neural
ideal, which was first defined in [5]. This is an ideal of the neural ring, also defined in [5].

Definition 4. The neural ideal of a code C on n neurons is defined to be

JC :=

〈
xσ
∏
j∈τ

(1− xj) : σ /∈ C, τ = [n]− σ

〉
.

Here xσ =
∏

i∈σ xi.

We refer to an element of JC of the form xσ
∏

i∈τ (1−xi) where |τ | ≥ 1 as a pseudomono-
mial. If |τ | = 0, we call the element a monomial. By the construction of the neural ideal,
σ ∩ τ = ∅.

The neural ideal has many different generating sets. We will look in particular at the
generating set called the canonical form.

Definition 5. The canonical form of a neural ideal CF (JC) is the set of minimal monomial
and pseudomonomials in JC with respect to divisibility. The canonical form is split into three
types of elements:

• Type 1 relations: xσ, for σ 6= ∅

3



• Type 2 relations: xσ
∏

i∈τ (1− xi), for σ, τ 6= ∅

• Type 3 relations:
∏

i∈τ (1− xi), for τ 6= ∅

A Type 3 relation implies that ∅ is not contained in the code, so we will work only with
Types 1 and 2. We write CF 1(JC) = {m : m is a Type 1 relation} and CF 2(JC) = {m : m
is a Type 2 relation}.

The following information comes from [8], [5], and clarifies the interpretations of the Type
1 and Type 2 relations:

• For xσ ∈ CF 1(JC), we have Uσ = ∅.

• For xσ
∏

i∈τ (1− xi) ∈ CF 2(JC), we have Uσ ⊆
⋃
i∈τ Ui.

Example 2. For our code C = {123, 124, 12, 13, 14, ∅} and its neural ideal JC, the canonical
form is CF (JC) = {x3x4, x4(1− x1), x3(1− x1), x2(1− x1), x1(1− x2)(1− x3)(1− x4)}.

Here, x3x4 ∈ CF (JC) corresponds to U3∩U4 = ∅, which is reflected in the code because it
does not contain {1234, 134, 234, 34}. We also have x4(1− x1) ∈ CF (JC), which means that
U4 ⊆ U1, so any codeword containing 4 must also contain 1, as reflected by {14, 124} ∈ C
and no other codewords containing 4.

Definition 6. A pseudomonomial is simple if it is of the form xσ
∏

i∈τ (1− xi) where |τ | = 1.
If |τ | > 1 the pseudomonomial is complex.

Definition 7. Let C be a code on n neurons. We say that σ ⊆ [n] is a missing intersection
codeword if σ 6∈ C and there exist some collection τ1, τ2, . . . τk ∈ C such that

⋂
i∈[k] τi = σ.

Example 3. In our example, x3(1−x1) is a simple pseudomonomial, x1(1−x2)(1−x3)(1−x4)
is a complex pseudomonomial, and 1 is a missing intersection codeword.

The following proposition comes from [4] and characterizes the canonical forms of intersection-
complete codes.

Proposition 1 (Curto et al. 2015). A code is intersection-complete if and only if its canon-
ical form consists only of monomials and simple pseudomonomials.

Our goal in this project was to find a characterization for max intersection-complete
codes.

3 Main Results
Let C be an arbitrary code on n neurons and U = {U1, . . . , Un} be a set of open sets, not
necessarily convex, with C = C(U). Let JC denote the neural ideal of C and CF (JC) denote
the canonical form of JC. Let Cmax(n) = Cmax.

Starting with Cmax, suppose we remove all τ ∈ Cmax such that there exists a monomial
xa1xa2 . . . xak ∈ CF (JC) with {a1, a2, . . . , ak} ⊆ τ . Denote this new subset of Cmax with all
such τ removed by C ′max.
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Proposition 2. The facets of C ′max are exactly the facets of C.

Proof. Our construction of C ′max and the Type 1 relations give us the inclusion C ⊆ C ′max.
Hence, we need only show that the set of facets of C ′max is contained in the set of facets of
C. Let τ ∈ C ′max be maximal under inclusion. Suppose for sake of contradiction that τ 6∈ C.
Then, Uτ = ∅. By [8], we know that {xσ : σ is minimal w.r.t Uσ = ∅} ⊆ CF (JC). Then,
either xτ ∈ CF (JC), or a monomial which divides xτ is in CF (JC). Let xτ ′ ∈ CF (JC) where
xτ ′ |xτ . Then, τ ′ ⊆ τ . Since xτ ′ ∈ CF (JC) and τ ′|τ , by our construction of C ′max, we get
that τ 6∈ C ′max which is a contradiction. Thus, every facet of C ′max is contained in C. Since
C ⊆ C ′max and τ is maximal under inclusion in C ′max, we know that τ must be maximal under
inclusion in C. Thus, τ is a facet in C, proving our claim.

Algorithm 1 uses the ideas of Proposition 2 to provide a systematic method of finding
the facets of a code. It takes as input CF 1(JC) and returns a list Cfac consisting of the facets
of C.

Input : The Type 1 elements of a canonical form CF 1(JC) = {mσ1 , . . . ,mσk} of a
neural code C on n neurons

Output: A list of the facets of C
1 begin
2 C ′max = Cmax(n),
3 for τ ∈ C ′max do
4 for mσi ∈ CF 1(JC) do
5 if σi ⊆ τ then
6 C ′max = C ′max − {τ}
7 end
8 end
9 end

10 Cfac = C ′max
11 for ν ∈ Cfac do
12 for τ ∈ C ′max do
13 if ν ⊂ τ then
14 Cfac = Cfac − {ν}
15 end
16 end
17 end
18 return Cfac
19 end
Algorithm 1: Algorithm which provides a list of a code’s facets given the Type 1
relations of its neural ideal.

Theorem 2. Algorithm 1 determines the facets of a code from the neural ideal.
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Proof. Let C be an arbitrary code on n neurons. Suppose the codewords of C are unknown
but JC is known. Let Cmax be the maximal code on n neurons, and construct C ′max from
CF (JC). Then it follows from Proposition 2 that the facets of C are exactly the facets of
C ′max.

The following example illustrates this algorithm on a small code.

Example 4. Let C = {123, 124, 12, 13, 14, ∅} as in Example 1 and let JC be its corresponding
neural ideal. Recall that C is max intersection-complete. We have CF 1(JC) = {x3x4}.
Because this is a neural code on four neurons,

Cmax = {1234, 123, 124, 134, 234, 12, 13, 14, 23, 24, 34, 1, 2, 3, 4, ∅}.

From CF 1(JC), we see that the only monomial in the canonical form is x3x4 which gives
us that C ′max = {123, 124, 12, 13, 14, 23, 24, 1, 2, 3, 4}. Thus, the facets of C ′max are {123, 124}
which are exactly the facets of C.

Corollary 1. Let C be a code on n neurons, τ ⊆ [n], and σ ⊆ [n] − τ . If xτ ∈ CF (JC)
and xσ

∏
i∈τ (1 + xi) ∈ CF (JC), then C is not convex open and thus not max intersection

complete.

Proof. Let C be an arbitrary code on n neurons, let JC denote the neural ideal of C, and let
CF (JC) denote the canonical form of JC.

Suppose there is τ ⊆ [n] such that xτ ∈ CF (JC). Then we have that
⋂
i∈τ Ui = ∅, but⋂

i∈τ−j Ui 6= ∅, ∀j ∈ τ .
Suppose further that there is σ ⊆ [n] − τ such that

∏
k∈σ xk

∏
i∈τ (1− xi) ∈ CF (JC).

Then Uσ ⊆
⋃
i∈τ Ui, where σ and τ are minimal with respect to this inclusion. Then, we can

write Uσ as
Uσ =

(⋃
i∈τ

Ui

)
∩ Uσ.

Let j ∈ τ be an arbitrary element. Then we can write

Uσ =
[( ⋃

i∈τ\j

Ui

)
∩ Uσ

]
∪
[
Uj ∩ Uσ

]
.

However, ( ⋃
i∈τ\j

Ui

)
∩ Uj = ∅.

Together, the above equalities imply that Uσ is the union of two disjoint sets. Then in
order for Uσ to be a connected set,

(⋃
i∈τ\j Ui

)
and Uj cannot both be open sets. Thus,

C is not convex open. By Cruz et al. [3], since C is not convex open, it is also not max
intersection-complete.

The corollary gives us a quick method for checking for connectedness and therefore con-
vexity of codes using only the canonical form, bypassing the need to determine facets.
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Example 5. Let C = {1234, 1235, 124, 125, 134, 135, 234, 235, 14, 15, 24, 15, 34, 35, 4, 5, ∅},
and let JC be its neural ideal. We find CF (JC) = {x4x5, x1(1− x4)(1− x5),
x2(1 − x4)(1 − x5), x3(1 − x4)(1 − x5)}. The presence of x4x5 implies that U4 and U5 are
disjoint, but we have that U1 ⊆ U4 ∪ U5, U2 ⊆ U4 ∪ U5, and U3 ⊆ U4 ∪ U5. In order for
U1, U2, or U3 to be connected sets, one or both of U4 and U5 cannot be open. From Figure
2 we see that it is impossible to have the receptive field Ui connected while keeping U4 and
U5 disjoint, hence our code is not max intersection-complete. Certainly, because 1234, 1235
are facets of C but 1234 ∩ 1235 = 123 /∈ C, we know C is not max intersection-complete.

U4 U5

U1

Figure 2: The squares represent U4 and U5, and the rectangle represents U1. Because U4

and U5 are both convex open, U1 cannot be connected and the code cannot be convex open.

4 Discussion
We have been able to take the first steps towards finding a signature for max intersection-
complete codes in the canonical form of the neural ideal. Corollary 1 provides a necessary
condition for the canonical form of a max intersection-complete code. We imagine that it
would be simple to write an algorithm to seek out this property.

We also have a conjecture about how to find the missing intersection codewords of a code
given its corresponding canonical form.

Conjecture 1. It is possible to construct some of a code’s missing intersection codewords
from the complex pseudomonomials present in the canonical form.

Our proposed method for this construction uses the following procedure:

1. Given a code and the canonical form of its neural ideal, pick one of the complex
pseudomonomials present: xa1 . . . xam(1− xb1) . . . (1− xb`).

2. Write the intersection
⋂
i∈[`] a1 . . . ambi = a1 . . . am.

3. Find those neurons or sets of neurons which appear together at all times. For example,
if the canonical form contains both x1(1− x2) and x2(1− x1), wherever 1 or 2 appears
in the intersection from step 2, the other should be added.

4. Add any neurons not prevented by monomials present in the canonical form. For
example, if x1x2x4 is in the canonical form, we could not add 2 to 14.

Example 6. Let C = {12345, 1236, 2345, ∅}.

1. Select the pseudomonomial x2(1− x4)(1− x6) ∈ CF (JC).
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2. Write 24 ∩ 26 = 2. Observe that 24, 26 /∈ C.

3. In CF (JC), we have x2(1 − x3), x3(1 − x2), x4(1 − x5), x5(1 − x4), so neurons 2 and 3
always appear together, and neurons 4 and 5 always appear together. We amend the
intersection to be 2345 ∩ 236 = 23. Observe that while 2345 ∈ C, 236 is not.

4. The only monomials present in CF (JC) are x4x6 and x5x6, so we add 1 to both sides
of the intersection to get 12345∩ 1236 = 123. Here we have both 12345 and 1236 ∈ C,
and we have found a missing intersection codeword.

Further work in this topic could include proving the above conjecture, and show that if
there exist missing intersections of facets, it will find at least one of them. Additionally, it
would be interesting to try to find a class of nonconvex codes which fall into the category
covered by Corollary 1, or to find other signatures for nonconvexity.
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