Zeros of Newform Eisenstein Series on $\Gamma_0(N)$

Victoria Jakicic

Indiana University of Pennsylvania

July 18, 2017

Victoria Jakicic (Indiana University of PA) Zeros of Newform Eisenstein Series on $\Gamma_0(N)$

$SL_2(\mathbb{Z})$ $SL_2(\mathbb{Z}) = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : a, b, c, d \in \mathbb{Z}; ad - bc = 1 \right\}.$

▶ < 토▷ 토 ∽ < < July 18, 2017 2 / 18

★聞▶ ★ 国▶ ★ 国▶

$SL_2(\mathbb{Z})$ $SL_2(\mathbb{Z}) = \left\{ \left[\begin{array}{cc} a & b \\ c & d \end{array} \right] : a, b, c, d \in \mathbb{Z}; ad - bc = 1 \right\}.$

$\Gamma_0(N)$

A subgroup of $SL_2(\mathbb{Z})$ is $\Gamma_0(N)$, defined as

$$\Gamma_0(N) = \left\{ \left[\begin{array}{cc} a & b \\ c & d \end{array} \right] \in SL_2(\mathbb{Z}) : c \equiv 0 \pmod{N} \right\}$$

Victoria Jakicic (Indiana University of PA) Zeros of Newform Eisenstein Series on $\Gamma_0(N)$

▶ < ∃ ▶ < ∃ ▶</p>

A modular form of weight k for $\Gamma = SL_2(\mathbb{Z})$ is a function of $f : \mathbb{H} \to \mathbb{C}$ such that:

A modular form of weight k for $\Gamma = SL_2(\mathbb{Z})$ is a function of $f : \mathbb{H} \to \mathbb{C}$ such that:

• For
$$\gamma = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \Gamma$$
, $f(\gamma(z)) = (cz + d)^k f(z)$ for all $z \in \mathbb{H}$;

A modular form of weight k for $\Gamma = SL_2(\mathbb{Z})$ is a function of $f : \mathbb{H} \to \mathbb{C}$ such that:

• For
$$\gamma = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \Gamma$$
, $f(\gamma(z)) = (cz + d)^k f(z)$ for all $z \in \mathbb{H}$;

• f is complex analytic; i.e. f is differentiable in z;

A modular form of weight k for $\Gamma = SL_2(\mathbb{Z})$ is a function of $f : \mathbb{H} \to \mathbb{C}$ such that:

• For
$$\gamma = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \Gamma$$
, $f(\gamma(z)) = (cz + d)^k f(z)$ for all $z \in \mathbb{H}$;

• f is complex analytic; i.e. f is differentiable in z;

• and $\lim_{z\to i\infty} f(z)$ exists.

Definition: Eisenstein Series

Consider the weight k Eisenstein series, $E_k : \mathbb{H} \to \mathbb{C}$, defined as

$$E_k(z) = \frac{1}{2} \sum_{(c,d)=1} \frac{1}{(cz+d)^k},$$

where $c, d \in \mathbb{Z}$ and $k \geq 3$.

Definition: Eisenstein Series

Consider the weight k Eisenstein series, $E_k : \mathbb{H} \to \mathbb{C}$, defined as

$$E_k(z) = rac{1}{2} \sum_{(c,d)=1} rac{1}{(cz+d)^k},$$

where $c, d \in \mathbb{Z}$ and $k \geq 3$.

- Rankin and Swinnerton-Dyer studied the zeros of $E_k(z)$.
- The zeros of $E_k(z)$ rest on the the boundary of the fundamental domain, \mathcal{F} , where

$$\mathcal{F} = \left\{ z \in \mathbb{H} : -rac{1}{2} \leq \mathsf{Re}(z) \leq rac{1}{2}, |z| \geq 1
ight\}.$$

Definition: Newform Eisenstein Series

Consider the weight k Newform Eisenstein series, $E_{\chi_1,\chi_2,k} : \mathbb{H} \to \mathbb{C}$, on the congruence subgroup $\Gamma_0(q_1q_2)$ defined as

$$E_{\chi_1,\chi_2,k}(z) = rac{1}{2} \sum_{(c,d)=1} rac{\chi_1(c)\chi_2(d)}{(cq_2z+d)^k},$$

where $c, d \in \mathbb{Z}$, $k \ge 3$, and χ_1 and χ_2 are primitive Dirichlet characters with modulus q_1 and q_2 respectively.

Definition: Newform Eisenstein Series

Consider the weight k Newform Eisenstein series, $E_{\chi_1,\chi_2,k} : \mathbb{H} \to \mathbb{C}$, on the congruence subgroup $\Gamma_0(q_1q_2)$ defined as

$$E_{\chi_1,\chi_2,k}(z) = \frac{1}{2} \sum_{(c,d)=1} \frac{\chi_1(c)\chi_2(d)}{(cq_2z+d)^k},$$

where $c, d \in \mathbb{Z}$, $k \ge 3$, and χ_1 and χ_2 are primitive Dirichlet characters with modulus q_1 and q_2 respectively.

- We wish to find zeros of $E_{\chi_1,\chi_2,k}(z)$ as weight k is sufficiently large.
- We utilize two different expansions to locate the zeros.

The Fourier Expansion for $E_{\chi_1,\chi_2,k}(z)$ is defined as

$$E_{\chi_1,\chi_2,k}(z) = e(\chi_1,\chi_2,k) \sum_{n=1}^{\infty} \left(\sum_{ab=n} \chi_1(a) \overline{\chi_2}(b) b^{k-1} \right) e(nz),$$

where

- $e(nz) = e^{2\pi inz}$
- $e(\chi_1, \chi_2, k)$ is some constant independent of z.

Let $F(z) = \sum_{n=1}^{\infty} \left(\sum_{ab=n} \chi_1(a) \overline{\chi_2}(b) b^{k-1} \right) e(nz).$

Victoria Jakicic (Indiana University of PA) Zeros of Newform Eisenstein Series on $\Gamma_0(N)$

Let
$$F(z) = \sum_{n=1}^{\infty} \left(\sum_{ab=n} \chi_1(a) \overline{\chi_2}(b) b^{k-1} \right) e(nz).$$

Let $f_j(z) = \overline{\chi_2}(j)j^{k-1}e(jz)$, and to simplify the expansion, take a = 1 and b = n.

Let
$$F(z) = \sum_{n=1}^{\infty} \left(\sum_{ab=n} \chi_1(a) \overline{\chi_2}(b) b^{k-1} \right) e(nz).$$

Let $f_j(z) = \overline{\chi_2}(j)j^{k-1}e(jz)$, and to simplify the expansion, take a = 1 and b = n.

$$F(z) = \sum_{n=1}^{\infty} f_n(z) + \delta(z),$$

Let
$$F(z) = \sum_{n=1}^{\infty} \left(\sum_{ab=n} \chi_1(a) \overline{\chi_2}(b) b^{k-1} \right) e(nz).$$

Let $f_j(z) = \overline{\chi_2}(j)j^{k-1}e(jz)$, and to simplify the expansion, take a = 1 and b = n.

$$F(z) = \sum_{n=1}^{\infty} f_n(z) + \delta(z),$$

where

$$|\delta(z)| \leq \sum_{n=1}^{\infty} n^{k-1} \exp(-2\pi ny) \left(\sum_{\substack{b|n \\ b < n}} \left(\frac{b^{k-1}}{n} \right) \right).$$

Rouché's Theorem

Let *F* and *h* be two complex-valued functions which are complex analytic on a closed region *V* with rectangular boundary ∂V . If

$$|F(z) - h(z)| < |F(z)| + |h(z)|,$$

for all $z \in \partial V$, then F and h have the same number of zeros, including multiplicity, in V.

Rouché's Theorem

Let *F* and *h* be two complex-valued functions which are complex analytic on a closed region *V* with rectangular boundary ∂V . If

$$|F(z) - h(z)| < |F(z)| + |h(z)|,$$

for all $z \in \partial V$, then F and h have the same number of zeros, including multiplicity, in V.

Why Rouché's Theorem?:

- We count the zeros of a good approximation to F, namely h.
- We consequently know the number of zeros of the original function *F*.

Fourier Expansion

Ghosh and Sarnak:

• They looked at Hecke cusp forms for $Im(z) \gg \sqrt{k}$.

Ghosh and Sarnak:

- They looked at Hecke cusp forms for $Im(z) \gg \sqrt{k}$.
- The functions are best approximated by one term of the Fourier expansion at $n = \ell$ with $y = \frac{k-1}{2\pi\ell}$.

Ghosh and Sarnak:

- They looked at Hecke cusp forms for $Im(z) \gg \sqrt{k}$.
- The functions are best approximated by one term of the Fourier expansion at $n = \ell$ with $y = \frac{k-1}{2\pi\ell}$.

For our purposes with Newform Eisenstein Series:

• Fourier expansion is used to approximate $E_{\chi_1,\chi_2,z}(z)$ when $\text{Im}(z) \gg \sqrt{k}$.

Ghosh and Sarnak:

- They looked at Hecke cusp forms for $Im(z) \gg \sqrt{k}$.
- The functions are best approximated by one term of the Fourier expansion at $n = \ell$ with $y = \frac{k-1}{2\pi\ell}$.

For our purposes with Newform Eisenstein Series:

- Fourier expansion is used to approximate $E_{\chi_1,\chi_2,z}(z)$ when $\operatorname{Im}(z) \gg \sqrt{k}$.
- The n = ℓ and n = ℓ + 1 terms of the Fourier expansion gives a good approximation for E_{χ1,χ2,k}(z) for y = Im(z) in the range:

$$rac{k-1}{2\pi(\ell+1)} = y_{\ell+1} \leq y \leq y_\ell = rac{k-1}{2\pi\ell}.$$

Main Term, $h_{\ell}(z)$

Consider the $n = \ell$ and $n = \ell + 1$ terms of the Fourier expansion:

$$egin{aligned} h_\ell(z) &= \overline{\chi_2}(\ell) \ell^{k-1} e(\ell z) + \overline{\chi_2}(\ell+1)(\ell+1)^{k-1} e((\ell+1)z) \ &= f_\ell(z) + f_{\ell+1}(z). \end{aligned}$$

Main Term, $h_{\ell}(z)$

Consider the $n = \ell$ and $n = \ell + 1$ terms of the Fourier expansion:

$$egin{aligned} h_\ell(z) &= \overline{\chi_2}(\ell) \ell^{k-1} e(\ell z) + \overline{\chi_2}(\ell+1)(\ell+1)^{k-1} e((\ell+1)z) \ &= f_\ell(z) + f_{\ell+1}(z). \end{aligned}$$

Lemma (1)

The main term $h_{\ell}(z)$ has a unique zero $x_0 + iy_0$ in the region $-\frac{1}{2} < x \le \frac{1}{2}$ and $y_{\ell+1} \le y \le y_{\ell}$, with x_0 and y_0 given as

$$e(x_0) = -\overline{\chi_2}(\ell)\chi_2(\ell+1)$$

and

$$y_0 = \frac{k-1}{2\pi} \left| \log \left(1 - \frac{1}{\ell+1} \right) \right|$$

Victoria Jakicic (Indiana University of PA) Zeros of Newform Eisenstein Series on $\Gamma_0(N)$

$$F(z) = h_{\ell}(z) + \beta(z).$$

$$F(z) = h_{\ell}(z) + \beta(z).$$

We write

$$\beta(z) = f_{\ell+2}(z) + f_{\ell-1}(z) + \varepsilon_1(z) + \varepsilon_2(z) + \delta(z)$$

$$F(z) = h_{\ell}(z) + \beta(z).$$

We write

$$\beta(z) = f_{\ell+2}(z) + f_{\ell-1}(z) + \varepsilon_1(z) + \varepsilon_2(z) + \delta(z)$$

where

•
$$\varepsilon_1(z) = \sum_{n=1}^{\ell-2} f_n(z)$$
 and $\varepsilon_2(z) = \sum_{n=\ell+3}^{\infty} f_n(z)$

July 18, 2017 11 / 18

$$F(z) = h_{\ell}(z) + \beta(z).$$

We write

$$\beta(z) = f_{\ell+2}(z) + f_{\ell-1}(z) + \varepsilon_1(z) + \varepsilon_2(z) + \delta(z)$$

where

•
$$\varepsilon_1(z) = \sum_{n=1}^{\ell-2} f_n(z)$$
 and $\varepsilon_2(z) = \sum_{n=\ell+3}^{\infty} f_n(z)$

• $\delta(z)$ as previously defined.

July 18, 2017 11 / 18

Define a natural normalization factor of F(z) as

$$N(y,k)=\frac{(2\pi y)^k}{\Gamma(k)},$$

and define the region V_ℓ as

$$V_{\ell} = \left\{ z \in \mathbb{H} : x_0 - \frac{1}{2} \le x \le x_0 + \frac{1}{2}, y_{\ell+1} \le y \le y_{\ell} \right\}.$$

Define a natural normalization factor of F(z) as

$$N(y,k)=\frac{(2\pi y)^k}{\Gamma(k)},$$

and define the region V_ℓ as

$$V_{\ell} = \left\{ z \in \mathbb{H} : x_0 - \frac{1}{2} \le x \le x_0 + \frac{1}{2}, y_{\ell+1} \le y \le y_{\ell} \right\}.$$

Theorem

Let ℓ be a natural number with $(\ell, q_2) = (\ell + 1, q_2) = 1$ and $\ell \le \epsilon \sqrt{k}$ for a small $\epsilon > 0$. Then, $E_{\chi_1,\chi_2,k}(z)$ has exactly one zero in V_{ℓ} .

Rouché's Theorem

Let F and h be two complex-valued functions which are complex analytic on a closed region V with rectangular boundary ∂V . If

$$|F(z) - h(z)| < |F(z)| + |h(z)|,$$

for all $z \in \partial V$, then F and h have the same number of zeros, including multiplicity, in V.

Rouché's Theorem

Let F and h be two complex-valued functions which are complex analytic on a closed region V with rectangular boundary ∂V . If

$$|F(z) - h(z)| < |F(z)| + |h(z)|,$$

for all $z \in \partial V$, then F and h have the same number of zeros, including multiplicity, in V.

Then, on ∂V_{ℓ} , it suffices to show:

$$N(y,k) \left| eta(z) \right| < N(y,k) \left| h_{\ell}(z) \right|.$$

Then, F(z) will have exactly one zero in V_{ℓ} .

On ∂V_{ℓ} ,

$$N(y,k) |h_{\ell}(z)| \gg rac{\sqrt{k}}{\ell}.$$

Victoria Jakicic (Indiana University of PA) Zeros of Newform Eisenstein Series on $\Gamma_0(N)$

э

< ∃ >

On ∂V_{ℓ} ,

$$N(y,k)|h_{\ell}(z)| \gg rac{\sqrt{k}}{\ell}.$$

To prove this lemma, we must break the boundary into three parts:

Victoria Jakicic (Indiana University of PA) Zeros of Newform Eisenstein Series on $\Gamma_0(N)$

On ∂V_{ℓ} ,

$$N(y,k)|h_{\ell}(z)| \gg rac{\sqrt{k}}{\ell}.$$

To prove this lemma, we must break the boundary into three parts:

• $y = y_{\ell}$, the top boundary;

On ∂V_{ℓ} ,

$$N(y,k)|h_{\ell}(z)| \gg rac{\sqrt{k}}{\ell}.$$

To prove this lemma, we must break the boundary into three parts:

- $y = y_{\ell}$, the top boundary;
- $y = y_{\ell+1}$, the bottom boundary;

On ∂V_ℓ ,

$$N(y,k)|h_{\ell}(z)|\gg rac{\sqrt{k}}{\ell}.$$

To prove this lemma, we must break the boundary into three parts:

- $y = y_{\ell}$, the top boundary;
- $y = y_{\ell+1}$, the bottom boundary;
- $x = x_0 \pm \frac{1}{2}$, the left and right boundaries.

Lemma (3)

For all $z \in V_{\ell}$,

$$N(y,k) |\beta(z)| \ll rac{\sqrt{k}}{2^k \ell} + rac{\sqrt{k}}{\ell} \exp\left(-rac{k}{4\ell^2}
ight).$$

Lemma (3)

For all $z \in V_{\ell}$,

$$N(y,k) \left| eta(z)
ight| \ll rac{\sqrt{k}}{2^k \ell} + rac{\sqrt{k}}{\ell} \exp\left(-rac{k}{4\ell^2}
ight).$$

Lemma (3)

For all $z \in V_\ell$,

$$N(y,k) \left| eta(z)
ight| \ll rac{\sqrt{k}}{2^k \ell} + rac{\sqrt{k}}{\ell} \exp\left(-rac{k}{4\ell^2}
ight).$$

•
$$f_{\ell+2}(z)$$
 and $f_{\ell-1}(z)$;

Lemma (3)

For all $z \in V_\ell$,

$$N(y,k) \left| eta(z)
ight| \ll rac{\sqrt{k}}{2^k \ell} + rac{\sqrt{k}}{\ell} \exp\left(-rac{k}{4\ell^2}
ight).$$

- $f_{\ell+2}(z)$ and $f_{\ell-1}(z)$;
- $\varepsilon_1(z)$ and $\varepsilon_2(z)$;

Lemma (3)

For all $z \in V_\ell$,

$$N(y,k) \left| eta(z)
ight| \ll rac{\sqrt{k}}{2^k \ell} + rac{\sqrt{k}}{\ell} \exp\left(-rac{k}{4\ell^2}
ight).$$

- $f_{\ell+2}(z)$ and $f_{\ell-1}(z)$;
- $\varepsilon_1(z)$ and $\varepsilon_2(z)$;
- $\delta(z)$.

From Lemma [1], [2], and [3], the theorem

Theorem

The function $E_{\chi_1,\chi_2,k}(z)$ has exactly one zero for in the region V_{ℓ} .

is proven as

$$\frac{\sqrt{k}}{2^k\ell} + \frac{\sqrt{k}}{\ell} \exp\left(-\frac{k}{4\ell^2}\right) < \frac{\sqrt{k}}{\ell}.$$

I would like to thank:

- Advisor, Dr. Matthew Young
- Collaborator, Thomas Brazelton
- Host, Texas A&M University
- Funding, National Science Foundation

Thank you.