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Definitions

SL2(Z)

SL2(Z) =

{[
a b
c d

]
: a, b, c , d ∈ Z; ad − bc = 1

}
.

Γ0(N)

A subgroup of SL2(Z) is Γ0(N), defined as

Γ0(N) =

{[
a b
c d

]
∈ SL2(Z) : c ≡ 0 (mod N)

}
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Modular Forms

Definition: Modular Form

A modular form of weight k for Γ = SL2(Z) is a function of f : H→ C
such that:

For γ =

[
a b
c d

]
∈ Γ, f (γ(z)) = (cz + d)k f (z) for all z ∈ H;

f is complex analytic; i.e. f is differentiable in z ;

and limz→i∞ f (z) exists.
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Modular Form: Eisenstein Series

Definition: Eisenstein Series

Consider the weight k Eisenstein series, Ek : H→ C, defined as

Ek(z) =
1

2

∑
(c,d)=1

1

(cz + d)k
,

where c, d ∈ Z and k ≥ 3.

Rankin and Swinnerton-Dyer studied the zeros of Ek(z).

The zeros of Ek(z) rest on the the boundary of the fundamental
domain, F , where

F =

{
z ∈ H : −1

2
≤ Re(z) ≤ 1

2
, |z | ≥ 1

}
.
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Newform Eisenstein Series

Definition: Newform Eisenstein Series

Consider the weight k Newform Eisenstein series, Eχ1,χ2,k : H→ C, on the
congruence subgroup Γ0(q1q2) defined as

Eχ1,χ2,k(z) =
1

2

∑
(c,d)=1

χ1(c)χ2(d)

(cq2z + d)k
,

where c, d ∈ Z, k ≥ 3, and χ1 and χ2 are primitive Dirichlet characters
with modulus q1 and q2 respectively.

We wish to find zeros of Eχ1,χ2,k(z) as weight k is sufficiently large.

We utilize two different expansions to locate the zeros.
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Fourier Expansion
Definition

The Fourier Expansion for Eχ1,χ2,k(z) is defined as

Eχ1,χ2,k(z) = e(χ1, χ2, k)
∞∑
n=1

(∑
ab=n

χ1(a)χ2(b)bk−1

)
e(nz),

where

e(nz) = e2πinz

e(χ1, χ2, k) is some constant independent of z .
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Fourier Expansion
Simplification

Let F (z) =
∞∑
n=1

(∑
ab=n

χ1(a)χ2(b)bk−1

)
e(nz).

Let fj(z) = χ2(j)jk−1e(jz), and to simplify the expansion, take a = 1 and
b = n.

F (z) =
∞∑
n=1

fn(z) + δ(z),

where

|δ(z)| ≤
∞∑
n=1

nk−1 exp(−2πny)

(∑
b|n
b<n

(
b

n

k−1
))

.

Victoria Jakicic (Indiana University of PA) Zeros of Newform Eisenstein Series on Γ0(N) July 18, 2017 7 / 18



Fourier Expansion
Simplification

Let F (z) =
∞∑
n=1

(∑
ab=n

χ1(a)χ2(b)bk−1

)
e(nz).

Let fj(z) = χ2(j)jk−1e(jz), and to simplify the expansion, take a = 1 and
b = n.

F (z) =
∞∑
n=1

fn(z) + δ(z),

where

|δ(z)| ≤
∞∑
n=1

nk−1 exp(−2πny)

(∑
b|n
b<n

(
b

n

k−1
))

.

Victoria Jakicic (Indiana University of PA) Zeros of Newform Eisenstein Series on Γ0(N) July 18, 2017 7 / 18



Fourier Expansion
Simplification

Let F (z) =
∞∑
n=1

(∑
ab=n

χ1(a)χ2(b)bk−1

)
e(nz).

Let fj(z) = χ2(j)jk−1e(jz), and to simplify the expansion, take a = 1 and
b = n.

F (z) =
∞∑
n=1

fn(z) + δ(z),

where

|δ(z)| ≤
∞∑
n=1

nk−1 exp(−2πny)

(∑
b|n
b<n

(
b

n

k−1
))

.

Victoria Jakicic (Indiana University of PA) Zeros of Newform Eisenstein Series on Γ0(N) July 18, 2017 7 / 18



Fourier Expansion
Simplification

Let F (z) =
∞∑
n=1

(∑
ab=n

χ1(a)χ2(b)bk−1

)
e(nz).

Let fj(z) = χ2(j)jk−1e(jz), and to simplify the expansion, take a = 1 and
b = n.

F (z) =
∞∑
n=1

fn(z) + δ(z),

where

|δ(z)| ≤
∞∑
n=1

nk−1 exp(−2πny)

(∑
b|n
b<n

(
b

n

k−1
))

.

Victoria Jakicic (Indiana University of PA) Zeros of Newform Eisenstein Series on Γ0(N) July 18, 2017 7 / 18



Rouché’s Theorem

Rouché’s Theorem

Let F and h be two complex-valued functions which are complex analytic
on a closed region V with rectangular boundary ∂V . If

|F (z)− h(z)| < |F (z)|+ |h(z)| ,

for all z ∈ ∂V , then F and h have the same number of zeros, including
multiplicity, in V .

Why Rouché’s Theorem?:

We count the zeros of a good approximation to F , namely h.

We consequently know the number of zeros of the original function F .
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Fourier Expansion
Approximation

Ghosh and Sarnak:

They looked at Hecke cusp forms for Im(z)�
√
k .

The functions are best approximated by one term of the Fourier
expansion at n = ` with y = k−1

2π` .

For our purposes with Newform Eisenstein Series:

Fourier expansion is used to approximate Eχ1,χ2,z(z) when
Im(z)�

√
k .

The n = ` and n = `+ 1 terms of the Fourier expansion gives a good
approximation for Eχ1,χ2,k(z) for y = Im(z) in the range:

k − 1

2π(`+ 1)
= y`+1 ≤ y ≤ y` =

k − 1

2π`
.
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Main Term, h`(z)
Lemma 1

Consider the n = ` and n = `+ 1 terms of the Fourier expansion:

h`(z) = χ2(`)`k−1e(`z) + χ2(`+ 1)(`+ 1)k−1e((`+ 1)z)

= f`(z) + f`+1(z).

Lemma (1)

The main term h`(z) has a unique zero x0 + iy0 in the region −1
2 < x ≤ 1

2
and y`+1 ≤ y ≤ y`, with x0 and y0 given as

e(x0) = −χ2(`)χ2(`+ 1)

and

y0 =
k − 1

2π

∣∣∣∣log

(
1− 1

`+ 1

)∣∣∣∣ .
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F (z) = h`(z) + β(z)

With h`(z), the function F (z) is now as follows:

F (z) = h`(z) + β(z).

We write

β(z) = f`+2(z) + f`−1(z) + ε1(z) + ε2(z) + δ(z)

where

ε1(z) =
`−2∑
n=1

fn(z) and ε2(z) =
∞∑

n=`+3

fn(z)

δ(z) as previously defined.
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Main Theorem

Define a natural normalization factor of F (z) as

N(y , k) =
(2πy)k

Γ(k)
,

and define the region V` as

V` =

{
z ∈ H : x0 −

1

2
≤ x ≤ x0 +

1

2
, y`+1 ≤ y ≤ y`

}
.

Theorem

Let ` be a natural number with (`, q2) = (`+ 1, q2) = 1 and ` ≤ ε
√
k for a

small ε > 0. Then, Eχ1,χ2,k(z) has exactly one zero in V`.
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Method for Proof
Rouché’s Theorem

Rouché’s Theorem

Let F and h be two complex-valued functions which are complex analytic
on a closed region V with rectangular boundary ∂V . If

|F (z)− h(z)| < |F (z)|+ |h(z)| ,

for all z ∈ ∂V , then F and h have the same number of zeros, including
multiplicity, in V .

Then, on ∂V`, it suffices to show:

N(y , k) |β(z)| < N(y , k) |h`(z)| .

Then, F (z) will have exactly one zero in V`.
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Proof of Theorem
Second Lemma

Lemma (2)

On ∂V`,

N(y , k) |h`(z)| �
√
k

`
.

To prove this lemma, we must break the boundary into three parts:

y = y`, the top boundary;

y = y`+1, the bottom boundary;

x = x0 ± 1
2 , the left and right boundaries.
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Proof of Theorem
Third Lemma

Lemma (3)

For all z ∈ V`,

N(y , k) |β(z)| �
√
k

2k`
+

√
k

`
exp

(
− k

4`2

)
.

To prove this lemma, we must break β(z) into three parts:

f`+2(z) and f`−1(z);

ε1(z) and ε2(z);

δ(z).
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Proof of Theorem

From Lemma [1], [2], and [3], the theorem

Theorem

The function Eχ1,χ2,k(z) has exactly one zero for in the region V`.

is proven as √
k

2k`
+

√
k

`
exp

(
− k

4`2

)
<

√
k

`
.
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Thank you.
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