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Chemical Reaction Networks

A CRN is described by three sets:
» species, S
> complexes, C C RS, (or ZS,)
» reactions, R CC xC

From these, we get a system of (first order)
differential equations
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QSSA Method

» Reduce to a model with fewer ODEs

» Quasi-steady-state-assumption (QSSA)
simplifies the system by assuming some
components do not accumulate

» Eliminates some intermediates by replacing
ODEs with algebraic constraints
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Galois Theory

» If L/k is a normal, separable extension of
fields, the automorphisms of L over k form
a group G (the Galois group)

» G is solvable if (and only if) each a € L
can be expressed in terms of elements of k,
roots of unity, radicals, and +, —, X, +

» Rules out a “quadratic formula” for
polynomials with degree 5 or higher
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QSSA & Galois Theory

» Work over k = Q(k;, ¢j, ...); adjoin all

relevant constants

QSSA < systems of polynomials
< ideals in k[xq, ..., x,]

» Examples exist which reduce to insoluble
univariate polynomials (over k)
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Under what circumstances will QSSA work?
When will it fail?

1.

classes of networks

2. structural properties
3.
4

. subnetworks/extensions

small counterexamples




Many different ways of framing QSSA:
» Finitely many solutions

» Solutions expressible in radicals




Many different ways of framing QSSA:
» Finitely many solutions
» Solutions expressible in radicals
+ Nondegenerate solutions
¢ Real solutions

+ Positive solutions




Algebra Preliminaries

Fix ideals I, J C k[xi, ..., x,]
the variety, V(I) = {zeros of | in k"}
similarly, V3(/) = {zeros of | in (k?)"}

a Grobner basis of |. generalization of

v

v

v

Gaussian Elimination

the ideal quotient, | : J, which
generalizes division

\4
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Let | be an ideal in k[xi, ..., x,]. Then V?4(I)
is finite if and only if each intersection
I N k[x;] is nonzero.

Almost always the case when using QSSA
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Computing Intersections

Let | be an ideal in k[xy, ..., x,| with Grobner
basis G w.r.t.

X]1 > Xp > ... > Xp

Then G N k[x,] generates | N k[x,].

For reduced GBs, there is a unique generator
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Checking Solvability

» Together, these suggest an algorithm:

1. Find the generators of / N k[x;]
2. Compute their Galois groups
3. Check for solvability

» If all the generators are solvable, V/(/) has
solvable entries in every coordinate
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A Simple Case

Fix I C k[x, y], k algebraically closed. If
there exist f, f, € | such that f; is
irreducible and f, & (f), then V(1) is finite.

Let | = (f,..., f,) and deg(f;) = d;. If V(I)
is finite, then deg(g) < dids...d,, where

I'N kx| = (8)- T




» S4 is solvable
» if deg(f) = n, Gal(f/k) embeds in S,

If a CRN has at-most-bimolecular kinetics

and we choose two ‘“chemically reasonable”
intermediates, QSSA is always possible.
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After computing a Grobner basis, we get

f(X) =(8k_2k22 - 3k2k§)X4 + (8k_2k2k3)X3
+ (—8ak_oky ko + aki ki — 4k2,ky)x?
- (2k_2k]_ak3)X + (2a2k_2k12)

» Gal(f /k) is isomorphic to Dg

» For y, we obtain Dg as well




Extending Solvability

» The proposition describes some common

systems, but is limited

» In some circumstances solvability can be
extended:

1. “treelike” mechanisms
2. nondegenerate and/or physically achievable
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Extending Solvability

Given a QOSR graph H and intermediates
Q, QSSA is possible when there exists an
equivalence relation ~ on H such that H/~
has no directed cycles and QSSA is possible
on each equivalence class in Q/~ under
particular kinds of substitution
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If we use Proposition 1 to prove solvability for
the previous theorem, QSSA is possible for
the nondegenerate achievable steady states.
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Pantea et al.: “Counterexample”

Remove reaction —5 as well
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Ql — {X7Z}




Modified Pantea Mechanism
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Modified Pantea Mechanism

Ql = {X,Z} and Q2 == {Y}

= —2k_3x° — kyax + 2ksbz
—2k1y2 — kgby + 2k_1b2 + k4ax
—2ksz? — ksbz + k_3x°

®,
(Dy
®,

x < Sz or {e}
y <— S4 X Zyp or 7y
z4+— S3or {e} 20/37



Modified Pantea Mechanism

» Multiple Galois groups arise when a
polynomial is reducible

> In this case, {e} and Z; correspond to
degenerate solutions (x = 0 or z = 0)

» These are irrelevant for actual chemistry, so
we would like to remove them
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Modified Pantea Mechanism

» If we want to remove the zeros of an ideal
J from another ideal /, we take their
saturation:

/:JC’O:[OJ/:J'77
m=1

» Similar to performing division
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» To encode nondegeneracy we want to cut
out
x=0o0ory=0o0rz=0
» Which is summarized by J = (xyz)

» The ideal we want:

Ih=1lg:J*




» After performing the same steps to find the
Galois groups:

X < 53
y(—)54><Z2
z+— 5




» Saturation is not immediately useful: it is
easy to ignore a few solutions, but...

Corollary 1 only requires nondegeneracy (i.e.

Imaginary or negative concentrations are
permissible)

e




Saturation

» Saturation removes the (infinitely many)
degenerate solutions ahead of time

» This may (not) simplify computations
» Almost all “counterexamples” in CRNs lie

at boundaries, so saturation may help
generalize some of these results
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Future Directions

More (general) finiteness criteria

v

v

More solvability criteria

v

CRN structure < Galois group

Weakening QSSA to nondegenerate and/or
achievable concentrations

v
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